满分5 > 初中数学试题 >

如图,直角梯形ABCD中,AD∥BC,∠ABC=90°,已知AD=AB=3,BC...

如图,直角梯形ABCD中,AD∥BC,∠ABC=90°,已知AD=AB=3,BC=4,动点P从B点出发,沿线段BC向点C作匀速运动;动点Q从点D出发,沿线段DA向点A作匀速运动.过Q点垂直于AD的射线交AC于点M,交BC于点N.P、Q两点同时出发,速度���为每秒1个单位长度.当Q点运动到A点,P、Q两点同时停止运动.设点Q运动的时间为t秒.
(1)求NC,MC的长(用t的代数式表示);
(2)当t为何值时,四边形PCDQ构成平行四边形;
(3)是否存在某一时刻,使射线QN恰好将△ABC的面积和周长同时平分?若存在,求出此时t的值;若不存在,请说明理由;
(4)探究:t为何值时,△PMC为等腰三角形.

manfen5.com 满分网
(1)依据题意易知四边形ABNQ是矩形∴NC=BC-BN=BC-AQ=BC-AD+DQ,BC、AD已知,DQ就是t,即解;∵AB∥QN,∴△CMN∽△CAB,∴CM:CA=CN:CB,CB、CN已知,根据勾股定理可求CA=5,即可表示CM; (2)四边形PCDQ构成平行四边形就是PC=DQ,列方程4-t=t即解; (3)可先根据QN平分△ABC的周长,得出MC+NC=AM+BN+AB,据此来求出t的值.然后根据得出的t的值,求出△MNC的面积,即可判断出△MNC的面积是否为△ABC面积的一半,由此可得出是否存在符合条件的t值. (4)由于等腰三角形的两腰不确定,因此分三种情况进行讨论: ①当MP=MC时,那么PC=2NC,据此可求出t的值. ②当CM=CP时,可根据CM和CP的表达式以及题设的等量关系来求出t的值. ③当MP=PC时,在直角三角形MNP中,先用t表示出三边的长,然后根据勾股定理即可得出t的值. 综上所述可得出符合条件的t的值. 【解析】 (1)∵AQ=3-t, ∴CN=4-(3-t)=1+t. 在Rt△ABC中,AC2=AB2+BC2=32+42, ∴AC=5. 在Rt△MNC中,cos∠NCM==,CM=; (2)由于四边形PCDQ构成平行四边形, ∴PC=QD,即4-t=t, 解得t=2. (3)如果射线QN将△ABC的周长平分,则有: MC+NC=AM+BN+AB, 即:(1+t)+1+t=(3+4+5), 解得:t=.(5分) 而MN=NC=(1+t), ∴S△MNC=(1+t)2=(1+t)2, 当t=时,S△MNC=(1+t)2=≠×4×3. ∴不存在某一时刻t,使射线QN恰好将△ABC的面积和周长同时平分; (4)①当MP=MC时;则有:NP=NC, 即PC=2NC∴4-t=2(1+t), 解得:t=; ②当CM=CP时;则有:(1+t)=4-t, 解得:t=; ③当PM=PC时;则有:在Rt△MNP中,PM2=MN2+PN2, 而MN=NC=(1+t), PN=|PC-NC|=|(4-t)-(1+t)|=|3-2t|, ∴[(1+t)]2+(3-2t)2=(4-t)2, 解得:t1=,t2=-1(舍去) ∴当t=,t=,t=时,△PMC为等腰三角形.
复制答案
考点分析:
相关试题推荐
如图所示,在Rt△ABC中,∠ABC=90度.将Rt△ABC绕点C顺时针方向旋转60°得到△DEC,点E在AC上,再将Rt△ABC沿着AB所在直线翻转180°得到△ABF.连接AD.
(1)求证:四边形AFCD是菱形;
(2)连接BE并延长交AD于G,连接CG,请问:四边形ABCG是什么特殊平行四边形,为什么?

manfen5.com 满分网 查看答案
某批发商以每件50元的价格购进800件T恤,第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余的T恤一次性清仓销售,清仓时单价为40元,设第二个月单价降低x元.
(1)填表:(不需化简)
时间  第一个月第二个月 清仓时 
 单价(元) 80  40
 销售量(件) 200  
(2)如果批发商希望通过销售这批T恤获利9000元,那么第二个月的单价应是多少元?
查看答案
已知:如图,BD为平行四边形ABCD的对角线,O为BD的中点,EF⊥BD于点O,与AD,BC分别交于点E,F.
求证:
(1)△BOF≌△DOE.
(2)DE=DF.

manfen5.com 满分网 查看答案
某企业2006年盈利1500万元,2008年克服全球金融危机的不利影响,仍实现盈利2160万元.从2006年到2008年,如果该企业每年盈利的年增长率相同.求:该企业2007年盈利多少万元?
查看答案
关于x的一元二次方程x2-3x-k=0有两个不相等的实数根.
(1)求k的取值范围;
(2)请选择一个k的负整数值,并求出方程的根.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.