满分5 > 初中数学试题 >

如图,抛物线y=ax2+bx+4与x轴的两个交点分别为A(-4,0)、B(2,0...

如图,抛物线y=ax2+bx+4与x轴的两个交点分别为A(-4,0)、B(2,0),与y轴交于点C,顶点为D.E(1,2)为线段BC的中点,BC的垂直平分线与x轴、y轴分别交于F、G.
(1)求抛物线的函数解析式,并写出顶点D的坐标;
(2)在直线EF上求一点H,使△CDH的周长最小,并求出最小周长;
(3)若点K在x轴上方的抛物线上运动,当K运动到什么位置时,△EFK的面积最大?并求出最大面积.

manfen5.com 满分网
(1)将A、B的坐标代入抛物线的解析式中,即可求出待定系数的值,进而可用配方法求出其顶点D的坐标; (2)根据抛物线的解析式可求出C点的坐标,由于CD是定长,若△CDH的周长最小,那么CH+DH的值最小,由于EF垂直平分线段BC,那么B、C关于直线EF对称,所以BD与EF的交点即为所求的H点;易求得直线BC的解析式,关键是求出直线EF的解析式;由于E是BC的中点,根据B、C的坐标即可求出E点的坐标;可证△CEG∽△COB,根据相似三角形所得的比例线段即可求出CG、OG的长,由此可求出G点坐标,进而可用待定系数法求出直线EF的解析式,由此得解; (3)过K作x轴的垂线,交直线EF于N;设出K点的横坐标,根据抛物线和直线EF的解析式,即可表示出K、N的纵坐标,也就能得到KN的长,以KN为底,F、E横坐标差的绝对值为高,可求出△KEF的面积,由此可得到关于△KEF的面积与K点横坐标的函数关系式,根据所得函数的性质即可求出其面积的最大值及对应的K点坐标. 【解析】 (1)∵抛物线y=ax2+bx+4与x轴的两个交点分别为A(-4,0)、B(2,0), , 解得,b=-1. 所以抛物线的解析式为,顶点D的坐标为(-1,). (2)设抛物线的对称轴与x轴交于点M, 因为EF垂直平分BC,即C关于直线EG的对称点为B, 连接BD交于EF于一点,则这一点为所求点H,使DH+CH最小, 即最小为:DH+CH=DH+HB=BD=; 而; ∴△CDH的周长最小值为CD+DH+CH=; 设直线BD的解析式为y=k1x+b1,则 解得:; 所以直线BD的解析式为y=x+3; 由于BC=2,CE=BC=,Rt△CEG∽Rt△COB, 得CE:CO=CG:CB, 所以CG=2.5,GO=1.5,G(0,1.5); 同理可求得直线EF的解析式为y=x+; 联立直线BD与EF的方程,解得使△CDH的周长最小的点H(,); (3)设K(t,),-4<t<2、过K作x轴的垂线交EF于N; 则KN=yK-yN=-(t+)=-; 所以S△EFK=S△KFN+S△KNE=KN(t+3)+KN(1-t)=2KN=-t2-3t+5=-(t+)2+; 即当t=-时,△EFK的面积最大,最大面积为,此时K(-,).
复制答案
考点分析:
相关试题推荐
在毕业晚会上,同学们表演哪一类型的节目由自己摸球来决定.在一个不透明的口袋中,装有除标号外其它完全相同的A、B、C三个小球,表演节目前,先从袋中摸球一次(摸球后又放回袋中),如果摸到的是A球,则表演唱歌;如果摸到的是B球,则表演跳舞;如果摸到的是C球,则表演朗诵.若小明要表演两个节目,则他表演的节目不是同一类型的概率是多少?
查看答案
如图,已知△ABC中,AB=BC,以AB为直径的⊙O交AC于点D,过D作DE⊥BC,垂足为E,连接OE,CD=manfen5.com 满分网,∠ACB=30°.
(1)求证:DE是⊙O的切线;
(2)分别求AB,OE的长.

manfen5.com 满分网 查看答案
巴中市某中学数学兴趣小组在开展“保护环境,爱护树木”的活动中,利用课外时间测量一棵古树的高,由于树的周围有水池,同学们在低于树基3.3米的一平坝内(如图),测得树顶A的仰角∠ACB=60°,沿直线BC后退6米到点D,又测得树顶A的仰角∠ADB=45°,若测角仪DE高1.3米,求这棵树的高AM.(结果保留两位小数,manfen5.com 满分网≈1.732)manfen5.com 满分网
查看答案
(1)计算:manfen5.com 满分网
(2)解方程:manfen5.com 满分网
查看答案
如图,扇形OAB,∠AOB=90°,⊙P与OA、OB分别相切于点F、E,并且与弧AB切于点C,则扇形OAB的面积与⊙P的面积比是   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.