满分5 > 初中数学试题 >

如图,等腰梯形ABCD中,AB=4,CD=9,∠C=60°,动点P从点C出发沿C...

如图,等腰梯形ABCD中,AB=4,CD=9,∠C=60°,动点P从点C出发沿CD方向向点D运动,动点Q同时以相同速度从点D出发沿DA方向向终点A运动,其中一个动点到达端点时,另一个动点也随之停止运动.
(1)求AD的长;
(2)设CP=x,问当x为何值时△PDQ的面积达到最大,并求出最大值;
(3)探究:在BC边上是否存在点M使得四边形PDQM是菱形?若存在,请找出点M,并求出BM的长;不存在,请说明理由.

manfen5.com 满分网
(1)可通过构建直角三角形来求【解析】 过A作AE⊥CD,垂足为E.那么可在直角三角形AED中根据两底的差和∠D的度数来求出AD的长. (也可通过作辅助线将梯形分成平行四边形和等边三角形两部分来求解.) (2)可通过求△PDQ的面积与x的函数关系式来得出△PDQ的最大值.由于P、Q速度相同,因此CP=QD=x,那么可用x表示出PD,而△PQD中,PD边上的高=QD•sin60°,由此可根据三角形的面积公式求出S△PQD与x之间的函数关系式,可根据函数的性质求出S的最大值以及对应的x的值. (3)假设存在这样的M点,那么DM就是PQ的垂直平分线,可得出QD=PD、PM=AM,然后证PM=PD即可.根据(2)中得出PD、DQ的表达式,可求出x=,即P是CD的中点,不难得出△QPD为等边三角形,因此∠QPD=∠C=60°,因此PQ∥CM,即∠DMC=90°,在直角三角形DMC中,P为斜边CD的中点,因此PM=PD,即可得出四边形PDQM是菱形.那么此时根据BM=BC-CM可求出BM的长. 【解析】 (1)解法一:如图1 过A作AE⊥CD,垂足为E. 依题意,DE==. 在Rt△ADE中,AD==. 解法二:如图2 过点A作AE∥BC交CD于点E,则CE=AB=4. ∠AED=∠C=60度. 又∵∠D=∠C=60°, ∴△AED是等边三角形. ∴AD=DE=9-4=5. (2)如图1 ∵CP=x,h为PD边上的高,依题意, △PDQ的面积S可表示为: S=PD•h=(9-x)•x•sin60° =(9x-x2)=-(x-)2+. 由题意知0≤x≤5. 当x=时(满足0≤x≤5),S最大值=. (3)如图4 存在满足条件的点M,则PD必须等于DQ. 于是9-x=x,x=. 此时,点P、Q的位置如图4所示,△PDQ恰为等边三角形. 过点D作DO⊥PQ于点O,延长DO交BC于点M,连接PM、QM,则DM垂直平分PQ, ∴MP=MQ. 易知∠1=∠C. ∴PQ∥BC. 又∵DO⊥PQ, ∴MC⊥MD ∴MP=CD=PD 即MP=PD=DQ=QM ∴四边形PDQM是菱形 所以存在满足条件的点M,且BM=BC-MC=5-=.
复制答案
考点分析:
相关试题推荐
东海体育用品商场为了推销某一运动服,先做了市场调查,得到数据如下表:
卖出价格x(元/件)50515253
销售量p(件)500490480470
(1)以x作为点的横坐标,p作为纵坐标,把表中的数据,在图中的直角坐标系中描出相应的点,观察连接各点所得的图形,判断p与x的函数关系式;
(2)如果这种运动服的买入价为每件40元,试求销售利润y(元)与卖出价格x(元/件)的函数关系式(销售利润=销售收入-买入支出);
(3)在(2)的条件下,当卖出价为多少时,能获得最大利润?

manfen5.com 满分网 查看答案
给出下列命题:
命题1:点(1,1)是直线y=x与双曲线y=manfen5.com 满分网的一个交点;
命题2:点(2,4)是直线y=2x与双曲线y=manfen5.com 满分网的一个交点;
命题3:点(3,9)是直线y=3x与双曲线y=manfen5.com 满分网的一个交点;
(1)请观察上面命题,猜想出命题n(n是正整数);
(2)证明你猜想的命题n是正确.
查看答案
已知△ABC,其中AB=AC.
(1)作AB的垂直平分线DE,交AB于点D,交AC于点E,连接BE;(尺规作图,不写作法)
(2)在(1)的基础上,若AD=8,同时满足△BCE的周长为24,求BC的长.

manfen5.com 满分网 查看答案
已知二次函数y=-2x2+4x+6.
(1)求出该函数图象的顶点坐标,对称轴,图象与x轴、y轴的交点坐标,并在下面的网格中画出这个函数的大致图象;
(2)利用函数图象回答:
①当x在什么范围内时,y随x的增大而增大当x在什么范围内时,y随x的增大而减小?
②当x在什么范围内时,y>0?

manfen5.com 满分网 查看答案
如图,已知△ABC是等边三角形,D,E分别在边BC,AC上,且CD=CE,连接DE并延长至点F,使EF=AE,连接AF,BE和CF
(1)请找出图中全等三角形,用符号“≌”表示;
(2)判断四边形ABDF是怎样的四边形,并说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.