满分5 > 初中数学试题 >

如图,四边形ABCD是菱形,点G是BC延长线上一点,连接AG,分别交BD、CD于...

如图,四边形ABCD是菱形,点G是BC延长线上一点,连接AG,分别交BD、CD于点E、F,连接CE.
(1)求证:∠DAE=∠DCE;
(2)当AE=2EF时,判断FG与EF有何等量关系?并证明你的结论.

manfen5.com 满分网
(1)根据四边形ABCD是菱形可得出△ADE≌△CDE就可证明; (2)根据有两组角对应相等的两个三角形相似得到△CEF∽△GEC,可得EF:EC=CE:GE,又因为△ABE≌△CBE AE=2EF,就能得出FG=3EF. (1)证明:∵四边形ABCD是菱形, ∴AD=CD,∠ADE=∠CDB; 在△ADE和△CDE中, ∴△ADE≌△CDE, ∴∠DAE=∠DCE. (2)【解析】 判断FG=3EF. ∵四边形ABCD是菱形, ∴AD∥BC, ∴∠DAE=∠G, 由题意知:△ADE≌△CDE ∴∠DAE=∠DCE, 则∠DCE=∠G, ∵∠CEF=∠GEC, ∴△ECF∽△EGC, ∴, ∵△ADE≌△CDE, ∴AE=CE, ∵AE=2EF, ∴=, ∴EG=2AE=4EF, ∴FG=EG-EF=4EF-EF=3EF.
复制答案
考点分析:
相关试题推荐
如图,已知一次函数y1=x+m(m为常数)的图象与反比例函数manfen5.com 满分网(k为常数,k≠0)的图象相交点A(1,3).
(1)求这两个函数的解析式及其图象的另一交点B的坐标;
(2)观察图象,写出使函数值y1≥y2的自变量x的取值范围.

manfen5.com 满分网 查看答案
如图,四边形ABCD是边长为2的正方形,点G是BC延长线上一点,连接AG,点E、F分别在AG上,连接BE、DF,∠1=∠2,∠3=∠4.
(1)证明:△ABE≌△DAF;
(2)若∠AGB=30°,求EF的长.

manfen5.com 满分网 查看答案
某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?
查看答案
小明想测量电线杆AB的高度,他发现电线杆AB的影子正好落在坡面CD和地面BC上,已知CD和地面成30°角,CD=4m,BC=10m,且此时测得1m高的标杆在地面的影长为2m,求AB的.

manfen5.com 满分网 查看答案
关于x的一元二次方程x2-3x-k=0有两个不相等的实数根.
(1)求k的取值范围;
(2)请选择一个k的负整数值,并求出方程的根.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.