满分5 > 初中数学试题 >

如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠BCA...

如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.
(1)探究:线段OE与OF的数量关系并加以证明;
(2)当点O在边AC上运动时,四边形BCFE会是菱形吗?若是,请证明;若不是,则说明理由;
(3)当点O运动到何处,且△ABC满足什么条件时,四边形AECF是正方形?

manfen5.com 满分网
(1)利用平行线的性质由角相等得出边相等; (2)假设四边形BCFE,再证明与在同一平面内过同一点有且只有一条直线与已知直线垂直相矛盾; (3)利用平行四边形及等腰直角三角形的性质证明四边形AECF是正方形. 【解析】 (1)OE=OF. 证明如下: ∵CE是∠ACB的平分线, ∴∠1=∠2. ∵MN∥BC, ∴∠1=∠3. ∴∠2=∠3. ∴OE=OC. 同理可证OC=OF. ∴OE=OF.(3分) (2)四边形BCFE不可能是菱形,若BCFE为菱形,则BF⊥EC, 而由(1)可知FC⊥EC,在平面内过同一点F不可能有两条直线同垂直于一条直线.(3分) (3)当点O运动到AC中点时,且△ABC是直角三角形(∠ACB=90°)时,四边形AECF是正方形. 理由如下: ∵O为AC中点, ∴OA=OC, ∵由(1)知OE=OF, ∴四边形AECF为平行四边形; ∵∠1=∠2,∠4=∠5,∠1+∠2+∠4+∠5=180°, ∴∠2+∠5=90°,即∠ECF=90°, ∴▱AECF为矩形, 又∵AC⊥EF. ∴▱AECF是正方形. ∴当点O为AC中点且△ABC是以∠ACB为直角三角形时,四边形AECF是正方形.(3分)
复制答案
考点分析:
相关试题推荐
如图,四边形ABCD为一梯形纸片,AB∥CD,AD=BC.翻折纸片ABCD,使点A与点C重合,折痕为EF.已知CE⊥AB.
(1)求证:EF∥BD;
(2)若AB=7,CD=3,求线段EF的长.

manfen5.com 满分网 查看答案
已知二次根式manfen5.com 满分网
(1)若x>0,化简此二次根式;
(2)若x为manfen5.com 满分网的小数部分,求此二次根式的值.
查看答案
已知,如图,在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、C的坐标分别为A(10,0),C(0,4),点D是OA的中点,点P在BC边上运动.当△ODP是腰长为5的等腰三角形时,求点P的坐标.

manfen5.com 满分网 查看答案
如图,AB=AC=AD.
(1)如果AD∥BC,那么∠C和∠D有怎样的数量关系?证明你的结论;
(2)如果∠C=2∠D,那么你能得到什么结论?证明你的结论.

manfen5.com 满分网 查看答案
已知,如图,AB∥CD,E、F分别是BC、AD的中点.
(1)求证:EF∥CD;
(2)若AB=2,CD=6,求EF的长.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.