满分5 > 初中数学试题 >

如图,梯形ABCD,AB∥DC,AD=DC=CB,AD、BC的延长线相交于G,C...

如图,梯形ABCD,AB∥DC,AD=DC=CB,AD、BC的延长线相交于G,CE⊥AG于E,CF⊥AB于F.
(1)请写出图中4组相等的线段(已知的相等线段除外);
(2)从你写出的4组相等的线段中选一组加以证明.

manfen5.com 满分网
(1)根据四边形ABCD为等腰梯形可知∠DAB=∠CBA,所以GA=GB.由此也得到GD=GC,CE=CF,利用全等三角形:△CAE≌△CAF,得AE=AF;△CDE≌△CBF(AAS),得DE=BF; (2)通过四边形ABCD为等腰梯形的性质得到∠DAB=∠CBA,所以利用等角对等边可知GA=GB. 【解析】 (1)∵四边形ABCD为等腰梯形, ∴∠DAB=∠CBA, ∴GA=GB. ∵AD=BC, ∴GD=GC, ∵AD=DC, ∴∠DAC=∠DCA, ∵CD∥AB, ∴∠DCA=∠CAB, ∴∠DAC=∠CAB, ∵CE⊥AG,CF⊥AB, ∴CE=CF, ∴△CAE≌△CAF, ∴AE=AF; ∴△CDE≌△CBF(AAS), ∴DE=BF. ∵∠DAB=∠CBA, ∴GA=GB. ∴CE=CF,AE=AF,DE=BF,DG=CG,AG=BG;(任选4组) (2)①:∵AB∥DC,AD=BC, ∴四边形ABCD为等腰梯形, ∴∠DAB=∠CBA, ∴GA=GB, 或:②:由①得,GA-DA=GB-CB, ∴GD=GC, 或:③:∵AB∥DC, ∴∠CAB=∠DCA, ∵AD=DC, ∴∠DAC=∠DCA, ∴∠CAB=∠DAC, ∵CE⊥AG于E,CF⊥AB于F, ∴CE=CF. 或:④:由③可证△CAE≌△CAF,得AE=AF 或:⑤:可证明△CDE≌△CBF(AAS),得DE=BF.
复制答案
考点分析:
相关试题推荐
计算:|-2|+2sin30°-(-manfen5.com 满分网2+(tan45°)-1
查看答案
二次函数y=manfen5.com 满分网x2的图象如图所示,点A位于坐标原点,A1,A2,A3,…,A2010在y轴的正半轴上,B1,B2,B3,…,B2010在二次函数第一象限的图象上,若△AB1A1,△A1B2A2,△A2B3A3,…,△A2009B2010A2010都为等边三角形,请计算△A2009B2010A2010的边长=   
manfen5.com 满分网 查看答案
如图,在菱形ABCD中,∠A=100°,M、N分别是边AB、BC的中点,MP⊥CD于点P.则∠NPC的度数为   
manfen5.com 满分网 查看答案
王老汉为了与客户签订购销合同,对自己的鱼塘中的鱼的总条数进行估计.第一次捞出100条,并将每条鱼作出记号放入水中;当它们完全混合鱼群后,又捞出100条,其中带有记号的鱼有2条,王老汉的鱼塘中鱼的条数估计约为    条. 查看答案
请你写出一个二次项系数为1,一个实数根为2的一元二次方程:    (答案不唯一). 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.