满分5 > 初中数学试题 >

已知点P的坐标为(m,0),在x轴上存在点Q(不与P点重合),以PQ为边作正方形...

已知点P的坐标为(m,0),在x轴上存在点Q(不与P点重合),以PQ为边作正方形PQMN,使点M落在反比例函数y=-manfen5.com 满分网的图象上.小明对上述问题进行了探究,发现不论m取何值,符合上述条件的正方形只有两个,且一个正方形的顶点M在第四象限,另一个正方形的顶点M1在第二象限.
(1)如图所示,若反比例函数解析式为y=-manfen5.com 满分网,P点坐标为(1,0),图中已画出一符合条件的一个正方形PQMN,请你在图中画出符合条件的另一个正方形PQ1M1N1,并写出点M1的坐标;M1的坐标是______
(2)请你通过改变P点坐标,对直线M1M的解析式y﹦kx+b进行探究可得k﹦______,若点P的坐标为(m,0)时,则b﹦______
(3)依据(2)的规律,如果点P的坐标为(6,0),请你求出点M1和点M的坐标.

manfen5.com 满分网
(1)根据要求,画出符合条件的另一个正方形PQ1M1N1,即可写出点M1的坐标; (2)由于四边形PQMN与四边形PQ1M1N1都是正方形,结合图象分析,可得出M1、P、M三点共线,再求得直线M1M的斜率,代入P点坐标,求得b=m; (3)依据(2)的规律,如果点P的坐标为(6,0),则直线M1M的解析式为y=-x+6,又点M(x,y)在反比例函数y=-的图象上,故x•(-x+6)=-2,解此方程,求出x的值,进而得出点M1和点M的坐标. 【解析】 (1)如图,画出符合条件的另一个正方形PQ1M1N1, 则容易看出M1的坐标为(-1,2); (2)由于四边形PQMN与四边形PQ1M1N1都是正方形, 则∠MPN=∠Q1PM1=45°,∠Q1PN=90°,∴∠M1PM=180°, ∴M1、P、M三点共线,由tan∠Q1PM1=1, 可知不管P点在哪里,k﹦-1; 把x=m代入y=-x+b,得b=m; (3)由(2)知,直线M1M的解析式为y=-x+6, 则M(x,y)满足x•(-x+6)=-2, 解得x1=3+,x2=3-, ∴y1=3-,y2=3+. ∴M1,M的坐标分别为(3-,3+),(3+,3-).
复制答案
考点分析:
相关试题推荐
已知:如图,有一块含30°的直角三角板OAB的直角边长BO的长恰与另一块等腰直角三角板ODC的斜边OC的长相等,把该套三角板放置在平面直角坐标系中,且AB=3.
(1)若双曲线的一个分支恰好经过点A,求双曲线的解析式;
(2)若把含30°的直角三角板绕点O按顺时针方向旋转后,斜边OA恰好与x轴重叠,点A落在点A′,试求图中阴影部分的面积(结果保留π).

manfen5.com 满分网 查看答案
建于明洪武七年(1374年),高度33米的光岳楼是目前我国现存的最高大、最古老的楼阁之一(如图①).喜爱数学实践活动的小伟,在30米高的光岳楼顶楼P处,利用自制测角仪测得正南方向商店A点的俯角为60°,又测得其正前方的海源阁宾馆B点的俯角为30°(如图②).求商店与海源阁宾馆之间的距离(结果保留根号).
manfen5.com 满分网
查看答案
如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC与E,交BC与D.求证:
(1)D是BC的中点;
(2)△BEC∽△ADC;
(3)BC2=2AB•CE.

manfen5.com 满分网 查看答案
小明和小慧玩纸牌游戏.如图是同一副扑克中的4张扑克牌的正面,将它们正面朝下洗匀后放在桌上,小明先从中抽出一张,小慧从剩余的3张牌中也抽出一张.
小慧说:若抽出的两张牌的数字都是偶数,你获胜;否则,我获胜.
(1)请用树状图表示出两人抽牌可能出现的所有结果;
(2)若按小慧说规则进行游戏,这个游戏公平吗?请说明理由.

manfen5.com 满分网 查看答案
求抛物线y=x2-2x-3的对称轴和顶点坐标,并画出示意图.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.