化简
得( )
A.±2
B.2
C.4
D.-4
考点分析:
相关试题推荐
小张同学善于改进学习方法,他发现对解题过程进行回顾反思,效果会更好.某一天他利用30分钟时间进行自主学习.假设他用于解题的时间x(单位:分钟)与学习收益量y的关系如图甲所示,用于回顾反思的时间x(单位:分钟)与学习收益量y的关系如图乙所示(其中OA是抛物线的一部分,A为抛物线的顶点),且用于回顾反思的时间不超过用于解题的时间.
问:小张如何分配解题和回顾反思的时间,才能使这30分钟的学习收益总量最大?
(学习收益总量=解题的学习收益量+回顾反思的学习收益量)
查看答案
如图,在平面直角坐标系中,已知抛物线的顶点坐标是M(1,2),并且经过点C(0,3),抛物线与直线x=2交于点P,
(1)求抛物线的函数解析式;
(2)在直线上取点A(2,5),求△PAM的面积;
(3)抛物线上是否存在点Q,使△QAM的面积与△PAM的面积相等?若存在,请求出点Q的坐标;若不存在,请说明理由.
查看答案
如图,AB为⊙O直径,C为圆上任一点,作弦CD⊥AB,垂足为H.连接OC.
(1)说明∠ACO=∠BCD成立的理由;
(2)作∠OCD的平分线CE交⊙O于E,连接OE(点D、E可以重合),求出点E在弧ADB的具体位置,并说明理由;
(3)在(2)的条件下,连接AE,判断圆上是否存在点C,使△ACE为等腰三角形?若存在,请你写出∠CAE的度数.(不用写出推理过程)
查看答案
如图,奥运圣火抵达某市奥林匹克广场后,沿图中直角坐标系中的一段反比例函数图象传递.动点T(m,n)表示火炬位置,火炬从离北京路20米处的M点开始传递,到离北京路2000米的N点时传递活动结束.迎圣火临时指挥部设在坐标原点O(北京路与奥运路的十字路口),OATB为少先队员鲜花方阵,方阵始终保持矩形形状且面积恒为20000平方米(路线宽度均不计).
(1)求图中反比例函数的关系式(不需写出自变量的取值范围);
(2)分别说出M点与N点到奥运路的距离;
(3)当鲜花方阵的周长为600米时,确定此时火炬的位置(用坐标表示).
查看答案
如图,A、B、C、D是⊙O上的四点,AB=DC.
(1)找出图中相等的圆周角;
(2)说明△ABC与△DCB全等的理由.
查看答案