小张同学善于改进学习方法,他发现对解题过程进行回顾反思,效果会更好.某一天他利用30分钟时间进行自主学习.假设他用于解题的时间x(单位:分钟)与学习收益量y的关系如图甲所示,用于回顾反思的时间x(单位:分钟)与学习收益量y的关系如图乙所示(其中OA是抛物线的一部分,A为抛物线的顶点),且用于回顾反思的时间不超过用于解题的时间.
问:小张如何分配解题和回顾反思的时间,才能使这30分钟的学习收益总量最大?
(学习收益总量=解题的学习收益量+回顾反思的学习收益量)
查看答案
如图,在平面直角坐标系中,已知抛物线的顶点坐标是M(1,2),并且经过点C(0,3),抛物线与直线x=2交于点P,
(1)求抛物线的函数解析式;
(2)在直线上取点A(2,5),求△PAM的面积;
(3)抛物线上是否存在点Q,使△QAM的面积与△PAM的面积相等?若存在,请求出点Q的坐标;若不存在,请说明理由.
查看答案