满分5 > 初中数学试题 >

如图,Rt△ABC中,∠C=90°,BC=6,AC=8.点P,Q都是斜边AB上的...

如图,Rt△ABC中,∠C=90°,BC=6,AC=8.点P,Q都是斜边AB上的动点,点P从B向A运动(不与点B重合),点Q从A向B运动,BP=AQ.点D,E分别是点A,B以Q,P为对称中心的对称点,HQ⊥AB于Q,交AC于点H.当点E到达顶点A时,P,Q同时停止运动.设BP的长为x,△HDE的面积为y.
(1)求证:△DHQ∽△ABC;
(2)求y关于x的函数解析式并求y的最大值;
(3)当x为何值时,△HDE为等腰三角形?

manfen5.com 满分网
(1)根据对称性可得HD=HA,那么可得∠HDQ=∠A,加上已有的两个直角相等,那么所求的三角形相似; (2)分0<x≤2.5;2.5<x≤5两种情况讨论,得到y关于x的函数关系式,再利用二次函数的最值即可求得最大值; (3)等腰三角形有两边相等,根据所在的不同位置再分不同的边相等解答. (1)证明:∵A、D关于点Q成中心对称,HQ⊥AB, ∴∠HQD=∠C=90°,HD=HA, ∴∠HDQ=∠A, ∴△DHQ∽△ABC. (2)【解析】 ①如图1,当0<x≤2.5时, ED=10-4x,QH=AQtanA=x, 此时y=(10-4x)×x=-+x, 当x=时,最大值y=, ②如图2,当2.5<x≤5时, ED=4x-10,QH=AQtanA=x, 此时y=(4x-10)×x=-x=(x-)2-. 当2.5<x≤5时,y有最大值,最大值为y=, ∴y与x之间的函数解析式为y=, 则当2.5<x≤5时,y有最大值,其最大值是y=. 综上可得,y的最大值为. (3)【解析】 ①如图1,当0<x≤2.5时, 若DE=DH,∵DH=AH==x,DE=10-4x, ∴10-4x=,x=. ∵∠EDH>90°, ∴EH>ED,EH>DH, 即ED=EH,HD=HE不可能; ②如图2,当2.5<x≤5时, 若DE=DH,4x-10=,x=; 若HD=HE,此时点D,E分别与点B,A重合,x=5; 若ED=EH,则∠ADH=∠DHE, 又∵点A、D关于点Q对称, ∴∠A=∠ADH, ∴△EDH∽△HDA, ∴=,x=, ∴当x的值为,,5,时,△HDE是等腰三角形.
复制答案
考点分析:
相关试题推荐
△ABC中,∠A=∠B=30°,AB=2manfen5.com 满分网,把△ABC放在平面直角坐标系中,使AB的中点位于坐标原点O(如图),△ABC可以绕点O作任意角度的旋转.
(1)当点B在第一象限,纵坐标是manfen5.com 满分网时,求点B的横坐标;
(2)如果抛物线y=ax2+bx+c(a≠0)的对称轴经过点C,请你探究:
①当a=manfen5.com 满分网,b=-manfen5.com 满分网,c=-manfen5.com 满分网时,A,B两点是否都在这条抛物线上?并说明理由;
②设b=-2am,是否存在这样的m的值,使A,B两点不可能同时在这条抛物线上?若存在,直接写出m的值;若不存在,请说明理由.

manfen5.com 满分网 查看答案
如图,BD为⊙O的直径,点A是弧BC的中点,AD交BC于E点,AE=2,ED=4.
(1)求证:△ABE∽△ABD;
(2)求tan∠ADB的值;
(3)延长BC至F,连接FD,使△BDF的面积等于manfen5.com 满分网,求∠EDF的度数.

manfen5.com 满分网 查看答案
(1)操作发现:
如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,且点G在矩形ABCD内部.小明将BG延长交DC于点F,认为GF=DF,你同意吗?说明理由.
(2)问题解决:
保持(1)中的条件不变,若DC=2DF,求manfen5.com 满分网的值;
(3)类比探求:
保持(1)中条件不变,若DC=nDF,求manfen5.com 满分网的值.

manfen5.com 满分网 查看答案
一种千斤顶利用了四边形的不稳定性.如图,其基本形状是一个菱形,中间通过螺杆连接,转动手柄可改变∠ADC的大小(菱形的边长不变),从而改变千斤顶的高度(即A、C之间的距离).若AB=40cm,当∠ADC从60°变为120°时,千斤顶升高了多少?(manfen5.com 满分网,结果保留整数)

manfen5.com 满分网 查看答案
已知二次函数y=-x2+bx+c的图象如图所示,它与x轴的一个交点坐标为(-1,0),与y轴的交点坐标为(0,3).
(1)求出b,c的值,并写出此二次函数的解析式;
(2)根据图象,写出函数值y为正数时,自变量x的取值范围.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.