满分5 > 初中数学试题 >

如图,抛物线y=ax2+bx经过点A(4,0),B(2,2).连接OB,AB. ...

如图,抛物线y=ax2+bx经过点A(4,0),B(2,2).连接OB,AB.
(1)求该抛物线的解析式;
(2)求证:△OAB是等腰直角三角形;
(3)将△OAB绕点O按顺时针方向旋转135°得到△OA′B′,写出△OA′B′的边A′B′的中点P的坐标.试判断点P是否在此抛物线上,并说明理由.

manfen5.com 满分网
(1)将A、B的坐标代入抛物线的解析式中,通过联立方程组即可求出抛物线的解析式; (2)过B作BC⊥x轴于C,根据A、B的坐标易求得OC=BC=AC=2,由此可证得∠BOC、∠BAC、∠OBC、∠ABC都是45°,即可证得△OAB是等腰直角三角形; (3)当△OAB绕点O按顺时针方向旋转135°时,OB′正好落在y轴上,易求得OB、AB的长,即可得到OB′、A′B′的长,从而可得到A′、B′的坐标,进而可得到A′B′的中点P点的坐标,然后代入抛物线中进行验证即可. 【解析】 (1)由题意得, 解得; ∴该抛物线的解析式为:y=-x2+2x; (2)过点B作BC⊥x轴于点C,则OC=BC=AC=2; ∴∠BOC=∠OBC=∠BAC=∠ABC=45°; ∴∠OBA=90°,OB=AB; ∴△OAB是等腰直角三角形; (3)∵△OAB是等腰直角三角形,OA=4, ∴OB=AB=2; 由题意得:点A′坐标为(-2,-2) ∴A′B′的中点P的坐标为(-,-2); 当x=-时,y=-×(-)2+2×(-)≠-2; ∴点P不在二次函数的图象上.
复制答案
考点分析:
相关试题推荐
如图,⊙O是等腰三角形ABC的外接圆,AB=AC,延长BC到点D,使CD=AC,连接AD交⊙O于点E,连接BE与AC交于点F.
(1)判断BE是否平分∠ABC,并说明理由;
(2)若AE=6,BE=8,求EF的长.

manfen5.com 满分网 查看答案
manfen5.com 满分网如图,小敏、小亮从A,B两地观测空中C处一个气球,分别测得仰角为30°和60°,A,B两地相距100m.当气球沿与BA平行地飘移10秒后到达C′处时,在A处测得气球的仰角为45°.
(1)求气球的高度(结果精确到0.1m);
(2)求气球飘移的平均速度(结果保留3个有效数字).
查看答案
2010年上海世博会某展览馆展厅东面有两个入口A,B,南面及西面、北面各有一个出口C,D,E,示意图如图所示.小华任选一个入口进入展览大厅,参观结束后任选一个出口离开.
(1)她从进入到离开共有多少种可能的结果?(要求画出树状图)
(2)她从入口A进入展厅并从北出口或西出口离开的概率是多少?
manfen5.com 满分网
查看答案
已知manfen5.com 满分网
(1)请化简这四个数;
(2)根据化简结果,列式表示这四个数中“有理数的和”与“无理数的积”的差,然后计算结果.
查看答案
如图,∠XOY=45°,一把直角三角尺△ABC的两个顶点A、B分别在OX,OY上移动,其中AB=10,
那么点O到顶点A的距离的最大值为   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.