满分5 > 初中数学试题 >

如图,Rt△ABC中,∠C=90°,BC=6,AC=8.点P,Q都是斜边AB上的...

如图,Rt△ABC中,∠C=90°,BC=6,AC=8.点P,Q都是斜边AB上的动点,点P从B向A运动(不与点B重合),点Q从A向B运动,BP=AQ.点D,E分别是点A,B以Q,P为对称中心的对称点,HQ⊥AB于Q,交AC于点H.当点E到达顶点A时,P,Q同时停止运动.设BP的长为x,△HDE的面积为y.
(1)求证:△DHQ∽△ABC;
(2)求y关于x的函数解析式并求y的最大值;
(3)当x为何值时,△HDE为等腰三角形?

manfen5.com 满分网
(1)根据对称性可得HD=HA,那么可得∠HDQ=∠A,加上已有的两个直角相等,那么所求的三角形相似; (2)分0<x≤2.5;2.5<x≤5两种情况讨论,得到y关于x的函数关系式,再利用二次函数的最值即可求得最大值; (3)等腰三角形有两边相等,根据所在的不同位置再分不同的边相等解答. (1)证明:∵A、D关于点Q成中心对称,HQ⊥AB, ∴∠HQD=∠C=90°,HD=HA, ∴∠HDQ=∠A, ∴△DHQ∽△ABC. (2)【解析】 ①如图1,当0<x≤2.5时, ED=10-4x,QH=AQtanA=x, 此时y=(10-4x)×x=-+x, 当x=时,最大值y=, ②如图2,当2.5<x≤5时, ED=4x-10,QH=AQtanA=x, 此时y=(4x-10)×x=-x=(x-)2-. 当2.5<x≤5时,y有最大值,最大值为y=, ∴y与x之间的函数解析式为y=, 则当2.5<x≤5时,y有最大值,其最大值是y=. 综上可得,y的最大值为. (3)【解析】 ①如图1,当0<x≤2.5时, 若DE=DH,∵DH=AH==x,DE=10-4x, ∴10-4x=,x=. ∵∠EDH>90°, ∴EH>ED,EH>DH, 即ED=EH,HD=HE不可能; ②如图2,当2.5<x≤5时, 若DE=DH,4x-10=,x=; 若HD=HE,此时点D,E分别与点B,A重合,x=5; 若ED=EH,则∠ADH=∠DHE, 又∵点A、D关于点Q对称, ∴∠A=∠ADH, ∴△EDH∽△HDA, ∴=,x=, ∴当x的值为,,5,时,△HDE是等腰三角形.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B
(1)求证:△ADF∽△DEC;
(2)若AB=4,AD=3manfen5.com 满分网,AE=3,求AF的长.
查看答案
春节期间某水库养殖场为适应市场需求,连续用20天时间,采用每天降低水位以减少捕捞成本的办法,对水库中某种鲜鱼进行捕捞、销售.九(1)班数学建模兴趣小组根据调查,整理出第x天(1≤x≤20且x为整数)的捕捞与销售的相关信息如表:
鲜鱼销售单价(元/kg)20
单位捕捞成本(元/kg)5-manfen5.com 满分网
捕捞量(kg)950-10x
(1)在此期间该养殖场每天的捕捞量与前一天末的捕捞量相比是如何变化的?
(2)假定该养殖场每天捕捞和销售的鲜鱼没有损失,且能在当天全部售出,求第x天的收入y(元)与x(天)之间的函数关系式?(当天收入=日销售额-日捕捞成本)
(3)试说明(2)中的函数y随x的变化情况,并指出在第几天y取得最大值,最大值是多少?
查看答案
如图,抛物线y=ax2+bx经过点A(4,0),B(2,2).连接OB,AB.
(1)求该抛物线的解析式;
(2)求证:△OAB是等腰直角三角形;
(3)将△OAB绕点O按顺时针方向旋转135°得到△OA′B′,写出△OA′B′的边A′B′的中点P的坐标.试判断点P是否在此抛物线上,并说明理由.

manfen5.com 满分网 查看答案
如图,⊙O是等腰三角形ABC的外接圆,AB=AC,延长BC到点D,使CD=AC,连接AD交⊙O于点E,连接BE与AC交于点F.
(1)判断BE是否平分∠ABC,并说明理由;
(2)若AE=6,BE=8,求EF的长.

manfen5.com 满分网 查看答案
manfen5.com 满分网如图,小敏、小亮从A,B两地观测空中C处一个气球,分别测得仰角为30°和60°,A,B两地相距100m.当气球沿与BA平行地飘移10秒后到达C′处时,在A处测得气球的仰角为45°.
(1)求气球的高度(结果精确到0.1m);
(2)求气球飘移的平均速度(结果保留3个有效数字).
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.