满分5 > 初中数学试题 >

如图,AB是⊙O的直径,点M是半径OA的中点,点P在线段AM上运动(不与点M重合...

如图,AB是⊙O的直径,点M是半径OA的中点,点P在线段AM上运动(不与点M重合).点Q在上半圆上运动,且总保持PQ=PO,过点Q作⊙O的切线交BA的延长线于点C.
(1)当∠QPA=90°时,判断△QCP是______三角形;
(2)当∠QPA=60°时,请你对△QCP的形状做出猜想,并给予证明;
(3)由(1)、(2)得出的结论,进一步猜想,当点P在线段AM上运动到任何位置时,△QCP一定是______三角形.

manfen5.com 满分网
(1)当∠QPA=90°时,由于∠QPO=∠QPA=90°,PQ=PO,则△OPQ是等腰直角三角形,∴∠QOA=45°.又由于OQ⊥CQ,所以∠C=45°,即△PQC是等腰直角三角形; (2)由等边对等角和三角形的外角与内角的关系知,∠C=90°-∠QOC=90°-30°=60°,故△QCP是等边三角形; (3)由于一直存在∠PQC=90°-∠OQP,∠C=90°-∠QOC,而∠QOC=∠OQP,∴∠C=∠PQC.故△QCP一定是等腰三角形. 【解析】 (1)等腰直角三角形; (2)当∠QPA=60°,△QCP是等边三角形. 证明:连接OQ. CQ是⊙O的切线, ∴∠OQC=90°. ∵PQ=PO, ∴∠PQO=∠QOP. ∴∠QOP+∠QCO=90°,∠OQP+∠CQP=90°, ∴∠QCO=∠CQP. ∴PQ=PC. 又∠QPA=60°, ∴△QCP是等边三角形; (3)等腰三角形.
复制答案
考点分析:
相关试题推荐
某公司经过市场调研,决定从明年起对甲、乙两种产品实行“限产压库”,计划这两种产品全年共生产20件,这20件的总产值P不少于1140万元,且不多于1170万元.已知有关数据如下表所示
产品每件产品的产值
45万元
75万元
(1)设安排生产甲产品X件(X为正整数),写出X应满足的不等式组;
(2)请你帮助设计出所有符合题意的生产方案.
查看答案
为了确保我市国家级卫生城市的称号,市里对主要街道的排污水沟进行改造.其中光明施工队承包了一段要开挖96米长的排污水沟,开工后每天比原计划多挖2米,结果提前4天完成任务,问原计划每天挖多少米?
查看答案
夏雪同学调查了班级同学身上有多少零用钱,将每位同学的零用钱记录下来,下面是全班40名同学的零用钱的数目(单位:元)
2,5,0,5,2,5,6,5,0,5,5,5,2,5,8,0,5,5,2,5,
5,8,6,5,2,5,5,2,5,6,5,5,0,6,5,6,5,2,5,0.
(1)请你写出同学的零用钱(0元,2元,5元,6元,8元)出现的频数;
(2)求出同学的零用钱的平均数、中位数和众数.
查看答案
先化简,再求值:manfen5.com 满分网,其中x=2.
查看答案
计算:(-2)3+manfen5.com 满分网(2009-manfen5.com 满分网-manfen5.com 满分网•tan60°.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.