满分5 > 初中数学试题 >

如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2.点O是AC的中...

如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2.点O是AC的中点,过点O的直线l从与AC重合的位置开始,绕点O作逆时针旋转,交AB边于点D,过点C作CE∥AB交直线l于点E,设直线l的旋转角为α.
(1)①当α=______度时,四边形EDBC是等腰梯形,此时AD的长为______
②当α=______度时,四边形EDBC是直角梯形,此时AD的长为______
(2)当α=90°时,判断四边形EDBC是否为菱形,并说明理由.

manfen5.com 满分网
(1)根据旋转的性质和等腰梯形的性质,①假设四边形EDBC是等腰梯形,根据题目已知条件及外角和定理可求α,AD;②假设四边形EDBC是直角梯形,根据题目已知条件及内角和定理可求α,AD. (2)根据∠α=∠ACB=90°先证明四边形EDBC是平行四边形.再利用Rt△ABC中,∠ACB=90°,∠B=60°,BC=2求得AB,AC,AO的长度;在Rt△AOD中,∠A=30°,AD=2,可求BD,比较得BD=BC,可证明四边形EDBC是菱形. 【解析】 (1)①当四边形EDBC是等腰梯形时, ∵∠EDB=∠B=60°,而∠A=30°, ∴α=∠EDB-∠A=30°, ∴△ADO是等腰三角形, ∴AD=OD, 过点O作OF∥BC, ∵BC⊥AC, ∴OF⊥AC, ∴OF是△ABC的中位线, ∴OF=BC=1, ∵α=∠EDB-∠A=30°, ∴∠ODF=60°=∠DOF=60°, ∴△ODF是等边三角形, ∴OD=OF=DF=1, ∵∠A=∠α=30°, ∴AD=OD=1; ②当四边形EDBC是直角梯形时,∠ODA=90°,而∠A=30°, 根据三角形的内角和定理,得α=90°-∠A=60°,此时,AD=AC×=1.5. (2)当∠α=90°时,四边形EDBC是菱形. ∵∠α=∠ACB=90°, ∴BC∥ED, ∵CE∥AB, ∴四边形EDBC是平行四边形. 在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2, ∴∠A=30°, ∴AB=4,AC=2, ∴AO==. 在Rt△AOD中,∠A=30°,OD=AD, AD==, ∴AD=2, ∴BD=2, ∴BD=BC. 又∵四边形EDBC是平行四边形, ∴四边形EDBC是菱形.
复制答案
考点分析:
相关试题推荐
如图,已知反比例函数manfen5.com 满分网和一次函数y=2x-b图象都经过点A(1,1)
(1)求反比例函数、一次函数的表达式;
(2)如图,已知点B在第三象限,且同时在上述两个函数的图象上,求点B的坐标;
(3)在x轴上存在点P,使△AOP为等腰三角形,把符合条件的P点坐标直接写出来.

manfen5.com 满分网 查看答案
小刚参观上海世博会,由于仅有一天的时间,他上午从A-中国馆、B-日本馆、C-美国馆中任意选择一处参观,下午从D-韩国馆、E-英国馆、F-德国馆中任意选择一处参观.
(1)请用画树状图或列表的方法,分析并写出小刚所有可能的参观方式(用字母表示即可);
(2)求小刚上午和下午恰好都参观亚洲国家展馆的概率.
查看答案
如图所示,∠BAC=∠ABD,AC=BD,点O是AD、BC的交点,点E是AB的中点.试判断OE和AB的位置关系,并给出证明.

manfen5.com 满分网 查看答案
将一块正方形铁皮的四个角各剪去一个边长为4cm的小正方形,做成一个无盖的盒子,盒子的容积是400cm3,求原铁皮的边长.
查看答案
三根垂直地面的木杆甲、乙、丙,在路灯下乙、丙的影子如图所示.试确定路灯灯泡的位置,再作出甲的影子.(不写作法,保留作图痕迹)
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.