本题关键是理清弧的关系,找出等弧,则可根据“同圆中等弧对等角”求解,
由∠C=∠D=∠E,得弧AC=弧BC=弧DE,即弧AC与弧BC的和是半圆,则弧AC对的圆心角是90度,弧AC对的圆周角是45度,则弧AC与弧BC与弧DE分别所对的圆心角的和是270度,有弧AD与弧BE的和的度数是90度,即,弧AD与弧BE分别所对的圆周角的和为45度,连接AC,BC,有∠ACD+∠BCE=45°,∠A+∠B=∠ACE+∠BCD=∠ACD+∠BCE+2∠DCE=45°+90°=135°.
【解析】
∵∠C=∠D=∠E,
∴弧AC=弧BC=弧DE,
∵弧AC与弧BC的和是半圆,
∴弧AC对的圆心角是90°,
弧AC对的圆周角是45°,
∴弧AC与弧BC与弧DE分别所对的圆心角的和是270°,
∴弧AD与弧BE的和的度数是90°,
即,弧AD与弧BE分别所对的圆周角的和为45°,
连接AC,BC,有∠ACD+∠BCE=45°,
∠A+∠B=∠ACE+∠BCD=∠ACD+∠BCE+2∠DCE=45°+90°=135°.