满分5 > 初中数学试题 >

如图所示,△ABC是直角三角形,∠ABC=90°,以AB为直径的⊙O交AC于点E...

如图所示,△ABC是直角三角形,∠ABC=90°,以AB为直径的⊙O交AC于点E,点D是BC边的中点,连接DE.
(1)求证:DE与⊙O相切;
(2)若⊙O的半径为manfen5.com 满分网,DE=3,求AE.

manfen5.com 满分网
(1)根据切线的判定定理只需证明OE⊥DE即可; (2)根据(1)中的证明过程,会发现BC=2DE,根据勾股定理求得AC的长,进一步求得直角三角形斜边上的高BE,最后根据勾股定理求得AE的长. 【解析】 (1)证明:连接OE,BE, ∵AB是直径. ∴BE⊥AC. ∵D是BC的中点, ∴DE=DB. ∴∠DBE=∠DEB. 又OE=OB, ∴∠OBE=∠OEB. ∴∠DBE+∠OBE=∠DEB+∠OEB. 即∠ABD=∠OED. 但∠ABC=90°, ∴∠OED=90°. ∴DE是⊙O的切线. (2)法1:∵∠ABC=90°,AB=2,BC=2DE=6, ∴AC=4. ∴BE=3. ∴AE=; 法2:∵(8分) ∴(10分) ∴.(12分)
复制答案
考点分析:
相关试题推荐
如图,在正方形ABCD中,AB=2,E是AD边上一点(点E与点A,D不重合).BE的垂直平分线交AB于M,交DC于N.
(1)设AE=x,四边形ADNM的面积为S,写出S关于x的函数关系式;
(2)当AE为何值时,四边形ADNM的面积最大?最大值是多少?

manfen5.com 满分网 查看答案
如图所示的平面直角坐标系中,有一条抛物线y=ax2+bx+c交x轴于A、B两点,交y轴于点C,已知抛物线的对称轴为x=1,B(3,0),C(0,-3).
(1)求二次函数y=ax2+bx+c的解析式;
(2)在抛物线对称轴上是否存在一点P,使点P到A、C两点距离之和最小?若存在,求出P点坐标;若不存在,请说明理由.manfen5.com 满分网
查看答案
如图所示,二次函数的图象与x轴相交于A、B两点,与y轴相交于点C,点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D.
(1)求D点的坐标和一次函数、二次函数的解析式;
(2)根据图象写出使一次函数值大于二次函数值的x的取值范围.

manfen5.com 满分网 查看答案
如图,矩形ABCD中,M是AD的中点.
(1)求证:△ABM≌△DCM;
(2)请你探索,当矩形ABCD中的一组邻边满足何种数量关系时,有BM⊥CM成立,说明你的理由.

manfen5.com 满分网 查看答案
如图,△ABC中,D、E分别是AC、AB上的点,BD与CE交于点O.给出下列三个条件:
①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD.
(1)上述三个条件中,哪两个条件______可判定△ABC是等腰三角形(用序号写出所有情形);
(2)选择第(1)小题中的一种情形,证明△ABC是等腰三角形.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.