满分5 > 初中数学试题 >

如图,在△ABC中,∠BAC=90°,AD是BC边上的高,E是BC边上的一个动点...

如图,在△ABC中,∠BAC=90°,AD是BC边上的高,E是BC边上的一个动点(不与B,C重合),EF⊥AB,EG⊥AC,垂足分别为F,G.
(1)求证:manfen5.com 满分网
(2)FD与DG是否垂直?若垂直,请给出证明;若不垂直,请说明理由;
(3)当AB=AC时,△FDG为等腰直角三角形吗?并说明理由.

manfen5.com 满分网
(1)由比例线段可知,我们需要证明△ADC∽△EGC,由两个角对应相等即可证得; (2)由矩形的判定定理可知,四边形AFEG为矩形,根据矩形的性质及相似三角形的判定可得到△AFD∽△CGD,从而不难得到结论; (3)是,利用相似三角形的性质即可求得. 【解析】 (1)在△ADC和△EGC中, ∵AD是BC边上的高,EG⊥AC, ∴∠ADC=∠EGC,∠C=∠C, ∴△ADC∽△EGC. ∴.(3分) (2)FD与DG垂直.(4分) 证明如下: 在四边形AFEG中, ∵∠FAG=∠AFE=∠AGE=90°, ∴四边形AFEG为矩形. ∴AF=EG. ∵, ∴.(6分) ∵AD是BC边上的高, ∴AD⊥BC. ∴∠FAD=∠C. ∴△AFD∽△CGD. ∴∠ADF=∠CDG.(8分) ∵∠CDG+∠ADG=90°, ∴∠ADF+∠ADG=90°. 即∠FDG=90°. ∴FD⊥DG.(10分) (3)当AB=AC时,△FDG为等腰直角三角形,理由如下: ∵AB=AC,∠BAC=90°, ∴∠B=∠C=45°, ∵AD⊥BC, ∴∠DAC=∠C, ∴AD=DC. ∵△AFD∽△CGD, ∴. ∴FD=DG. ∵∠FDG=90°, ∴△FDG为等腰直角三角形.(12分)
复制答案
考点分析:
相关试题推荐
如图,在△OAB中,∠B=90°,∠BOA=30°,OA=4,将△OAB绕点O按逆时针方向旋转至△OA′B′,C点的坐标为(0,4).
(1)求A′点的坐标;
(2)求过C,A′,A三点的抛物线y=ax2+bx+c的解析式;
(3)在(2)中的抛物线上是否存在点P,使以O,A,P为顶点的三角形是等腰直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
如图,△ABC是等腰三角形,AB=AC,以AC为直径的⊙O与BC交于点D,DE⊥AB,垂足为E,ED的延长线与AC的延长线交于点F.
(1)求证:DE是⊙O的切线;
(2)若⊙O的半径为2,BE=1,求cosA的值.

manfen5.com 满分网 查看答案
如图,△ABC是等腰直角三角形,∠A=90°,点P、Q分别是AB、AC上的一动点,且满足BP=AQ,D是BC的中点.
(1)求证:△PDQ是等腰直角三角形;
(2)当点P运动到什么位置时,四边形APDQ是正方形,并说明理由.

manfen5.com 满分网 查看答案
如图所示,在直角梯形ABCD中,∠ABC=90°,AD∥BC,AB=BC,E是AB的中点,CE⊥BD.
(1)求证:BE=AD;
(2)求证:AC是线段ED的垂直平分线;
(3)△DBC是等腰三角形吗?并说明理由.

manfen5.com 满分网 查看答案
如图,△OAB是边长为2的等边三角形,过点A的直线manfen5.com 满分网+m与x轴交于点E.
(1)求点E的坐标;
(2)求过A、O、E三点的抛物线解析式;
(3)若点P是(2)中求出的抛物线AE段上一动点(不与A、E重合),设四边形OAPE的面积为S,求S的最大值.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.