在某段限速公路BC上(公路视为直线),交通管理部门规定汽车的最高行驶速度不能超过60千米/时(即
米/秒),并在离该公路100米处设置了一个监测点A.在如图所示的直角坐标系中,点A位于y轴上,测速路段BC在x轴上,点B在A的北偏西60°方向上,点C在A的北偏东45°方向上,另外一条高等级公路在y轴上,AO为其中的一段.
(1)求点B和点C的坐标;
(2)一辆汽车从点B匀速行驶到点C所用的时间是15秒,通过计算,判断该汽车在这段限速路上是否超速?(参考数据:
≈1.7)
(3)若一辆大货车在限速路上由C处向西行驶,一辆小汽车在高等级公路上由A处向北行驶,设两车同时开出且小汽车的速度是大货车速度的2倍,求两车在匀速行驶过程中的最近距离是多少?
考点分析:
相关试题推荐
为了普及环保知识,增强环保意识,某中学组织了环保知识竞赛活动,
初三各年级根据初赛成绩分别选出了10名同学参加决赛,这些选手的决赛成绩(满分为100分)如下表所示:
| 决赛成绩(单位:分) |
初中一年级 | 80 86 88 80 88 99 80 74 91 89 |
初中二年级 | 85 85 87 97 85 76 88 77 87 88 |
初中三年级 | 82 80 78 78 81 96 97 88 89 86 |
(1)请你填写表二:
| 平均数 | 众数 | 中位数 |
一年级 | 85.5 | | 87 |
二年级 | 85.5 | 85 | |
三年级 | | | 84 |
(2)请从以下两个不同的角度对三个年级的决赛成绩进行分析:
①从众数和平均数相结合看(分析哪个年级成绩好些);
②从平均数和中位数相结合看(分析哪个年级成绩好些).
(3)如果在每个年级参加决赛的选手中分别选出3人参加总决赛,你认为哪个年级的实力更强些?并说明理由.
查看答案
如图,AB为⊙O的直径,D是⊙O上的一点,过O点作AB的垂线交AD于点E,交BD的延长线于点C,F为CE上一点,且FD=FE.
(1)请探究FD与⊙O的位置关系,并说明理由;
(2)若⊙O的半径为2,BD=
,求BC的长.
查看答案
如图,反比例函数y=
的图象与一次函数y=kx+b的图象交于点A(m,2),点B(-2,n),一次函数图象与y轴的交点为C.
(1)求一次函数解析式;
(2)求C点的坐标;
(3)求△AOC的面积.
查看答案
如图,已知在△ABC中,∠BAC=90°,AD⊥BC于D,CE平分∠ACB,交AD于G,EF⊥BC于F,求证:四边形AEFG为菱形.
查看答案
如图,已知△ABC的三个顶点的坐标分别为A(-2,3)、B(-6,0)、C(-1,0).
(1)请直接写出点A关于y轴对称的点的坐标;
(2)将△ABC绕坐标原点O逆时针旋转90度.画出图形,直接写出点B的对应点的坐标;
(3)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标.
查看答案