满分5 > 初中数学试题 >

如图,抛物线y=-x2+bx+c与x轴交于A(1,0),B(-3,0)两点. (...

如图,抛物线y=-x2+bx+c与x轴交于A(1,0),B(-3,0)两点.
(1)求该抛物线的解析式;
(2)设(1)中的抛物线交y轴与C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由;
(3)在(1)中的抛物线上的第二象限上是否存在一点P,使△PBC的面积最大?若存在,求出点P的坐标及△PBC的面积最大值;若没有,请说明理由.

manfen5.com 满分网
(1)根据题意可知,将点A、B代入函数解析式,列得方程组即可求得b、c的值,求得函数解析式; (2)根据题意可知,边AC的长是定值,要想△QAC的周长最小,即是AQ+CQ最小,所以此题的关键是确定点Q的位置,找到点A的对称点B,求得直线BC的解析式,求得与对称轴的交点即是所求; (3)存在,设得点P的坐标,将△BCP的面积表示成二次函数,根据二次函数最值的方法即可求得点P的坐标. 【解析】 (1)将A(1,0),B(-3,0)代y=-x2+bx+c中得 (2分) ∴(3分) ∴抛物线解析式为:y=-x2-2x+3;(4分) (2)存在(5分) 理由如下:由题知A、B两点关于抛物线的对称轴x=-1对称 ∴直线BC与x=-1的交点即为Q点,此时△AQC周长最小 ∵y=-x2-2x+3 ∴C的坐标为:(0,3) 直线BC解析式为:y=x+3(6分) Q点坐标即为 解得 ∴Q(-1,2);(7分) (3)存在.(8分) 理由如下:设P点(x,-x2-2x+3)(-3<x<0) ∵S△BPC=S四边形BPCO-S△BOC=S四边形BPCO- 若S四边形BPCO有最大值,则S△BPC就最大, ∴S四边形BPCO=S△BPE+S直角梯形PEOC(9分) =BE•PE+OE(PE+OC) =(x+3)(-x2-2x+3)+(-x)(-x2-2x+3+3) = 当x=-时,S四边形BPCO最大值= ∴S△BPC最大=(10分) 当x=-时,-x2-2x+3= ∴点P坐标为(-,).(11分)
复制答案
考点分析:
相关试题推荐
在某段限速公路BC上(公路视为直线),交通管理部门规定汽车的最高行驶速度不能超过60千米/时(即manfen5.com 满分网米/秒),并在离该公路100米处设置了一个监测点A.在如图所示的直角坐标系中,点A位于y轴上,测速路段BC在x轴上,点B在A的北偏西60°方向上,点C在A的北偏东45°方向上,另外一条高等级公路在y轴上,AO为其中的一段.
(1)求点B和点C的坐标;
(2)一辆汽车从点B匀速行驶到点C所用的时间是15秒,通过计算,判断该汽车在这段限速路上是否超速?(参考数据:manfen5.com 满分网≈1.7)
(3)若一辆大货车在限速路上由C处向西行驶,一辆小汽车在高等级公路上由A处向北行驶,设两车同时开出且小汽车的速度是大货车速度的2倍,求两车在匀速行驶过程中的最近距离是多少?
manfen5.com 满分网
查看答案
为了普及环保知识,增强环保意识,某中学组织了环保知识竞赛活动,
初三各年级根据初赛成绩分别选出了10名同学参加决赛,这些选手的决赛成绩(满分为100分)如下表所示:
决赛成绩(单位:分)
初中一年级80 86 88 80 88 99 80 74 91 89
初中二年级85 85 87 97 85 76 88 77 87 88
初中三年级82 80 78 78 81 96 97 88 89 86
(1)请你填写表二:
平均数众数中位数
一年级85.587
二年级85.585
三年级84
(2)请从以下两个不同的角度对三个年级的决赛成绩进行分析:
①从众数和平均数相结合看(分析哪个年级成绩好些);
②从平均数和中位数相结合看(分析哪个年级成绩好些).
(3)如果在每个年级参加决赛的选手中分别选出3人参加总决赛,你认为哪个年级的实力更强些?并说明理由.
查看答案
如图,AB为⊙O的直径,D是⊙O上的一点,过O点作AB的垂线交AD于点E,交BD的延长线于点C,F为CE上一点,且FD=FE.
(1)请探究FD与⊙O的位置关系,并说明理由;
(2)若⊙O的半径为2,BD=manfen5.com 满分网,求BC的长.

manfen5.com 满分网 查看答案
如图,反比例函数y=manfen5.com 满分网的图象与一次函数y=kx+b的图象交于点A(m,2),点B(-2,n),一次函数图象与y轴的交点为C.
(1)求一次函数解析式;
(2)求C点的坐标;
(3)求△AOC的面积.

manfen5.com 满分网 查看答案
如图,已知在△ABC中,∠BAC=90°,AD⊥BC于D,CE平分∠ACB,交AD于G,EF⊥BC于F,求证:四边形AEFG为菱形.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.