满分5 > 初中数学试题 >

如图,直线y=k1x+b与反比例函数(x>0)的图象交于A(1,6),B(a,3...

如图,直线y=k1x+b与反比例函数manfen5.com 满分网(x>0)的图象交于A(1,6),B(a,3)两点.
(1)求k1、k2的值.
(2)直接写出manfen5.com 满分网时x的取值范围;
(3)如图,等腰梯形OBCD中,BC∥OD,OB=CD,OD边在x轴上,过点C作CE⊥OD于点E,CE和反比例函数的图象交于点P,当梯形OBCD的面积为12时,请判断PC和PE的大小关系,并说明理由.

manfen5.com 满分网
(1)先把点A代入反比例函数求得反比例函数的解析式,再把点B代入反比例函数解析式求得a的值,再把点A,B代入一次函数解析式利用待定系数法求得k1的值. (2)当y1>y2时,直线在双曲线上方,即x的范围是在A,B之间,故可直接写出范围. (3)设点P的坐标为(m,n),易得C(m,3),CE=3,BC=m-2,OD=m+2,利用梯形的面积是12列方程,可求得m的值,从而求得点P的坐标,根据线段的长度关系可知PC=PE. 【解析】 (1)由题意知k2=1×6=6 ∴反比例函数的解析式为y=(x>0) ∵x>0, ∴反比例函数的图象只在第一象限, 又∵B(a,3)在y=的图象上, ∴a=2, ∴B(2,3) ∵直线y=k1x+b过A(1,6),B(2,3)两点 ∴ ∴ 故k1的值为-3,k2的值为6; (2)由(1)得出-3x+9->0, 即直线的函数值大于反比例函数值, 由图象可知,此时1<x<2, 则x的取值范围为1<x<2; (3)当S梯形OBCD=12时,PC=PE. 设点P的坐标为(m,n),过B作BF⊥x轴, ∵BC∥OD,CE⊥OD,BO=CD,B(2,3), ∴C(m,3),CE=3,BC=m-2,OD=OE+ED=OE+OF=m+2 ∴S梯形OBCD=,即12= ∴m=4,又mn=6 ∴n=,即PE=CE ∴PC=PE.
复制答案
考点分析:
相关试题推荐
如图,点P(1,t)是曲线manfen5.com 满分网上的点,Q(a,b)是第一象限内一点,且△OPQ为等腰直角三角形,斜边OQ交曲线于M,求点M的坐标.

manfen5.com 满分网 查看答案
在直角坐标系内,点O为坐标原点,二次函数y=x2+(k-5)x-(k+4)的图象交x轴于A(x1,0)、B(x2,0),且(x1+1)(x2+1)=-8:
(1)求二次函数的解析式;
(2)请你对此图象设计一种变换方案,使变换后的图象经过原点.
查看答案
如图,一艘海轮位于灯塔C的北偏东30°方向,距离灯塔80海里的A处,海轮沿正南方向匀速航行一段时间后,到达位于灯塔C的东南方向上的B处.
(1)求灯塔C到航线AB的距离;
(2)若海轮的速度为20海里/时,求海轮从A处到B处所用的时间(结果精确到0.1小时)
(参考数据:manfen5.com 满分网manfen5.com 满分网

manfen5.com 满分网 查看答案
对于函数y=f(x),若存在x∈R,使得f(x)=x成立,则称x为y=f(x)的不动点.已知函数f(x)=tx2+(k+1)x+(k-1)(t≠0),对于任意实数k,函数f(x)恒有两个相异的不动点,则t的取值范围是    查看答案
已知抛物线y=x2+ax+b与x轴的两个不同的交点A、B距原点的距离都大于1小于2,一个直角三角形的两条直角边长分别为a、b,则斜边c的取值范围是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.