满分5 > 初中数学试题 >

小明在研究苏教版《有趣的坐标系》后,得到启发,针对正六边形OABCDE,自己设计...

小明在研究苏教版《有趣的坐标系》后,得到启发,针对正六边形OABCDE,自己设计了一个坐标系如图,该坐标系以O为原点,直线OA为x轴,直线OE为y轴,以正六边形OABCDE的边长为一个单位长.坐标系中的任意一点P用一有序实数对(a,b)来表示,我们称这个有序实数对(a,b)为点P的坐标.坐标系中点的坐标的确定方法如下:
(ⅰ)x轴上点M的坐标为(m,0),其中m为M点在x轴上表示的实数;
(ⅱ)y轴上点N的坐标为(0,n),其中n为N点在y轴上表示的实数;
(ⅲ)不在x、y轴上的点Q的坐标为(a,b),其中a为过点Q且与y轴平行的直线与x轴的交点在x轴上表示的实数,b为过点Q且与x轴平行的直线与y轴的交点在y轴上表示的实数.
则:(1)分别写出点A、B、C的坐标;
(2)标出点M(2,3)的位置;
(3)若点K(x,y)为射线OD上任一点,求x与y所满足的关系式.
manfen5.com 满分网
本题要充分考虑题中所给的提示,注意“不在x、y轴上的点Q的坐标为(a,b),其中a为过点Q且与y轴平行的直线与x轴的交点在x轴上表示的实数,b为过点Q且与x轴平行的直线与y轴的交点在y轴上表示的实数.”这和我们以往所认识平面直角坐标系不同,因此我们要理解好题意,由题意可得A、B、C坐标分别为A(1,0),B(2,1),C(2,2);再去标注M位置即可. 【解析】 (1)由图示可知各点的坐标为:A(1,0),B(2,1),C(2,2); (2)如图: (3)设射线OD上点K的横、纵坐标满足的关系式为y=kx; 由图知:D(1,2),则:k=2, 即x与y所满足的关系式为:y=2x(x≥0).
复制答案
考点分析:
相关试题推荐
Rt△ABC与Rt△FED是两块全等的含30°、60°角的三角板,按如图(一)所示拼在一起,CB与DE重合.
(1)求证:四边形ABFC为平行四边形;
(2)取BC中点O,将△ABC绕点O顺时钟方向旋转到如图(二)中△A′B′C′位置,直线B'C'与AB、CF分别相交于P、Q两点,猜想OQ、OP长度的大小关系,并证明你的猜想;
(3)在(2)的条件下,指出当旋转角至少为多少度时,四边形PCQB为菱形?(不要求证明)
manfen5.com 满分网
查看答案
已知关于 x的方程x2-(2k-3)+k2+1=0.
(1)当k为何值时,此方程有实数根;
(2)选择一个你喜欢的k的值,并求解此方程.
查看答案
先化简,再求值:(x-manfen5.com 满分网)÷(1+manfen5.com 满分网),其中x=manfen5.com 满分网-1.
查看答案
解方程:x2-x-3=0
查看答案
古希腊数学家把数1,3,6,10,15,21…叫做三角形数,它有一定的规律性,若把第一个三角形数记为a1,第二个三角形数记为a2,…,第n个三角形数记为an,计算a2-a1,a3-a2,a4-a3,…,由此推算,a100-a99=    ,a100=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.