如图所示,AB是⊙O的直径,AD是弦,∠DBC=∠A.
(1)求证:BC与⊙O相切;
(2)若OC∥AD,OC交BD于点E,BD=6,CE=4,求AD的长.
考点分析:
相关试题推荐
如图,△ABC中,A(-2,3),B(-3,1),C(-1,2).
(1)将△ABC向右平移4个单位长度,画出平移后的△A
1B
1C
1;
(2)画出△ABC关于x轴对称的△A
2B
2C
2;
(3)将△ABC绕原点O旋转180°,画出旋转后的△A
3B
3C
3;
(4)在△A
1B
1C
1,△A
2B
2C
2,△A
3B
3C
3中,△______与△______成轴对称,对称轴是______;△______与△______成中心对称,对称中心的坐标是______.
查看答案
某中学为了培养学生的社会实践能力,今年“五•一”长假期间要求学生参加一项社会调查活动.为此,小明在他所居住小区的600个家庭中,随机调查了50个家庭在新工资制度实施后的收入情况,并绘制了如下的频数分布表和频数分布直方图.(收入取整数,单位:元)
请你根据以上提供的信息,解答下列问题:
(1)补全频数分布表和频数分布直方图;
(2)这50个家庭收入的中位数落在______小组;
(3)请你估算该小区600个家庭中收入较低(不足1400元)的家庭个数大约有多少?
分 组 | 频 数 | 频 率 |
1000~1200 | 3 | 0.060 |
1200~1400 | 12 | 0.240 |
1400~1600 | 18 | 0.360 |
1600~1800 | | 0.200 |
1800~2000 | 5 | |
2000~2200 | 2 | 0.040 |
合计 | 50 | 1.000 |
查看答案
已知:如图,在正方形ABCD中,G是CD上一点,延长BC到E,使CE=CG,连接BG并延长交DE于F.
(1)求证:△BCG≌△DCE;
(2)将△DCE绕点D顺时针旋转90°得到△DAE′,判断四边形E′BGD是什么特殊四边形,并说明理由.
查看答案
已知关于x的一元二次方程x
2-mx-2=0…①
(1)若x=-1是方程①的一个根,求m的值和方程①的另一根;
(2)对于任意实数m,判断方程①的根的情况,并说明理由.
查看答案
(1)解方程:x
2-2x-3=0;
(2)计算:(
)×
.
查看答案