满分5 > 初中数学试题 >

已知Rt△ABC中,AC=BC,∠C=90°,D为AB边的中点,∠EDF=90°...

已知Rt△ABC中,AC=BC,∠C=90°,D为AB边的中点,∠EDF=90°,∠EDF绕D点旋转,它的两边分别交AC、CB(或它们的延长线)于E、F.
(1)当∠EDF绕D点旋转到DE⊥AC于E时(如图1),易证S△DEF+S△CEF=manfen5.com 满分网S△ABC
(2)当∠EDF绕D点旋转到DE和AC不垂直时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,S△DEF、S△CEF、S△ABC又有怎样的数量关系?请写出你的猜想,不需证明.
manfen5.com 满分网
先作出恰当的辅助线,再利用全等三角形的性质进行解答. 【解析】 (1)显然△AED,△DEF,△ECF,△BDF都为等腰直角三角形,且全等, 则S△DEF+S△CEF=S△ABC; (2)图2成立;图3不成立. 图2证明:过点D作DM⊥AC,DN⊥BC,则∠DME=∠DNF=∠MDN=90°, 又∵∠C=90°, ∴DM∥BC,DN∥AC, ∵D为AB边的中点, 由中位线定理可知:DN=AC,MD=BC, ∵AC=BC, ∴MD=ND, ∵∠EDF=90°, ∴∠MDE+∠EDN=90°,∠NDF+∠EDN=90°, ∴∠MDE=∠NDF, 在△DME与△DNF中, ∵, ∴△DME≌△DNF(ASA), ∴S△DME=S△DNF, ∴S四边形DMCN=S四边形DECF=S△DEF+S△CEF, 由以上可知S四边形DMCN=S△ABC, ∴S△DEF+S△CEF=S△ABC. 图3不成立,连接DC, 证明:△DEC≌△DBF(ASA,∠DCE=∠DBF=135°) S△DEF=S△DBF+S四边形DBFE, =S△DEC+S四边形DBFE, =S五边形DBFEC, =S△CFE+S△DBC, =S△CFE+, ∴S△DEF-S△CFE=. 故S△DEF、S△CEF、S△ABC的关系是:S△DEF-S△CEF=S△ABC.
复制答案
考点分析:
相关试题推荐
要对一块长60米、宽40米的矩形荒地ABCD进行绿化和硬化.
(1)设计方案如图①所示,矩形P、Q为两块绿地,其余为硬化路面,P、Q两块绿地周围的硬化路面宽都相等,并使两块绿地面积的和为矩形ABCD面积的manfen5.com 满分网,求P、Q两块绿地周围的硬化路面的宽.
(2)某同学有如下设想:设计绿化区域为相外切的两等圆,圆心分别为O1和O2,且O1到AB、BC、AD的距离与O2到CD、BC、AD的距离都相等,其余为硬化地面,如图②所示,这个设想是否成立?若成立,求出圆的半径;若不成立,说明理由.

manfen5.com 满分网 查看答案
manfen5.com 满分网如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.
(1)求证:PC是⊙O的切线;
(2)求证:BC=manfen5.com 满分网AB;
(3)点M是manfen5.com 满分网的中点,CM交AB于点N,若AB=4,求MN•MC的值.
查看答案
如图,⊙O中,弦AB、CD相交于AB的中点E,连接AD并延长至点F,使DF=AD,连接BC、BF.
(1)求证:△CBE∽△AFB;
(2)当manfen5.com 满分网时,求manfen5.com 满分网的值.

manfen5.com 满分网 查看答案
如图,△ABC内接于⊙O,AD是△ABC的边BC上的高,AE是⊙O的直径,连接BE,△ABE与△ADC相似吗?请证明你的结论.

manfen5.com 满分网 查看答案
某商店从厂家以每件21元的价格购进一批商品,该商品可以自行定价,若每件商品售价为a元,则可卖出(350-10a)件.但物价局限定每次商品加价不能超过进价的20%,商品计划要赚400元,需要卖出多少件商品?每件商品的售价应该是多少元?
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.