满分5 > 初中数学试题 >

如图,抛物线y=ax2+bx-3与x轴交于A,B两点,与y轴交于C点,且经过点(...

如图,抛物线y=ax2+bx-3与x轴交于A,B两点,与y轴交于C点,且经过点(2,-3a),对称轴是直线x=1,顶点是M.
(1)求抛物线对应的函数表达式;
(2)经过C,M两点作直线与x轴交于点N,在抛物线上是否存在这样的点P,使以点P,A,C,N为顶点的四边形为平行四边形?若存在,请求出点P的坐标;若不存在,请说明理由;
(3)设直线y=-x+3与y轴的交点是D,在线段BD上任取一点E(不与B,D重合),经过A,B,E三点的圆交直线BC于点F,试判断△AEF的形状,并说明理由;
(4)当E是直线y=-x+3上任意一点时,(3)中的结论是否成立(请直接写出结论).

manfen5.com 满分网
(1)依题意联立方程组求出a,b的值后可求出函数表达式. (2)分别令x=0,y=0求出A、B、C三点的坐标,然后易求直线CM的解析式.证明四边形ANCP为平行四边形可求出点P的坐标. (3)求出直线y=-x+3与坐标轴的交点D,B的坐标.然后证明∠AFE=∠ABE=45°,AE=AF,可证得三角形AEF是等腰直角三角形. (4)根据(3)中所求,即可得出当E是直线y=-x+3上任意一点时,(3)中的结论仍成立. 【解析】 (1)根据题意,得, 解得, ∴抛物线对应的函数表达式为y=x2-2x-3; (2)存在.连接AP,CP, 如下图所示: 在y=x2-2x-3中,令x=0,得y=-3. 令y=0,得x2-2x-3=0, ∴x1=-1,x2=3. ∴A(-1,0),B(3,0),C(0,-3). 又y=(x-1)2-4, ∴顶点M(1,-4), 容易求得直线CM的表达式是y=-x-3. 在y=-x-3中,令y=0,得x=-3. ∴N(-3,0), ∴AN=2, 在y=x2-2x-3中,令y=-3,得x1=0,x2=2. ∴CP=2, ∴AN=CP. ∵AN∥CP, ∴四边形ANCP为平行四边形,此时P(2,-3); (3) △AEF是等腰直角三角形. 理由:在y=-x+3中,令x=0,得y=3,令y=0,得x=3. ∴直线y=-x+3与坐标轴的交点是D(0,3),B(3,0). ∴OD=OB, ∴∠OBD=45°, 又∵点C(0,-3), ∴OB=OC. ∴∠OBC=45度, 由图知∠AEF=∠ABF=45°,∠AFE=∠ABE=45°, ∴∠EAF=90°,且AE=AF. ∴△AEF是等腰直角三角形; (4)当点E是直线y=-x+3上任意一点时,(3)中的结论:△AEF是等腰直角三角形成立.
复制答案
考点分析:
相关试题推荐
在平行四边形ABCD中,过点C作CE⊥CD交AD于点E,将线段EC绕点E逆时针旋转90°得到线段EF(如图1)
(1)在图1中画图探究:
①当P为射线CD上任意一点(P1不与C重合)时,连接EP1;绕点E逆时针旋转90°得到线段EG1.判断直线FG1与直线CD的位置关系,并加以证明;
②当P2为线段DC的延长线上任意一点时,连接EP2,将线段EP2绕点E逆时针旋转90°得到线段EG2.判断直线G1G2与直线CD的位置关系,画出图形并直接写出你的结论.
(2)若AD=6,tanB=manfen5.com 满分网,AE=1,在①的条件下,设CP1=x,S△P1FG1=y,求y与x之间的函数关系式,并写出自变量x的取值范围.
manfen5.com 满分网
查看答案
已知:如图,在△ABC中,AB=AC,AE是角平分线,BM平分∠ABC交AE于点M,经过B,M两点的⊙O交BC于点G,交AB于点F,FB恰为⊙O的直径.
(1)求证:AE与⊙O相切;
(2)当BC=4,cosC=manfen5.com 满分网时,求⊙O的半径.

manfen5.com 满分网 查看答案
在一次课外实践活动中,同学们要测量某公园人工湖两侧A,B两个凉亭之间的距离.现测得AC=30m,BC=70m,∠CAB=120°,请计算A,B两个凉亭之间的距离.

manfen5.com 满分网 查看答案
为了比较市场上甲、乙两种电子钟每日走时误差的情况,从这两种电子钟中,各随机抽取10台进行测试,两种电子钟走时误差的数据如下表(单位:秒):
  编号
类型
甲种电子钟1-3-442-22-1-12
乙种电子钟4-3-12-21-22-21
(1)计算甲、乙两种电子钟走时误差的平均数;
(2)计算甲、乙两种电子钟走时误差的方差;
(3)根据经验,走时稳定性较好的电子钟质量更优.若两种类型的电子钟价格相同,请问:你买哪种电子钟?为什么?
查看答案
解方程:x2-2x-2=0
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.