满分5 > 初中数学试题 >

如图,足球场上守门员在O处开出一高球,球从离地面1米的A处飞出(A在y轴上),运...

如图,足球场上守门员在O处开出一高球,球从离地面1米的A处飞出(A在y轴上),运动员乙在距O点6米的B处发现球在自己头的正上方达到最高点M,距地面约4米高,球落地后又一次弹起.据实验测算,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.
(1)求足球开始飞出到第一次落地时,该抛物线的表达式.
(2)足球第一次落地点C距守门员多少米?(取4manfen5.com 满分网=7)
(3)运动员乙要抢到第二个落点D,他应再向前跑多少米?(取manfen5.com 满分网=5)

manfen5.com 满分网
(1)依题意代入x的值可得抛物线的表达式. (2)令y=0可求出x的两个值,再按实际情况筛选. (3)本题有多种解法.如图可得第二次足球弹出后的距离为CD,相当于将抛物线AEMFC向下平移了2个单位可得 2=-(x-6)2解得x的值即可知道CD、BD. 【解析】 (1)(3分)如图,设第一次落地时, 抛物线的表达式为y=a(x-6)2+4.(1分) 由已知:当x=0时y=1, 即1=36a+4, ∴a=-(2分) ∴表达式为y=-(x-6)2+4,(3分) (或y=-x2+x+1). (2)令y=0,-(x-6)2+4=0, ∴(x-6)2=48. x1=4+6≈13,x2=-4+6<0(舍去).(2分) ∴足球第一次落地距守门员约13米.(3分) (3)解法一:如图,第二次足球弹出后的距离为CD 根据题意:CD=EF(即相当于将抛物线AEMFC向下平移了2个单位) ∴2=-(x-6)2+4解得x1=6-2,x2=6+2(2分) ∴CD=|x1-x2|=4≈10(3分) ∴BD=13-6+10=17(米).(4分) 解法二:令-(x-6)2+4=0 解得x1=6-4(舍),x2=6+4≈13.∴点C坐标为(13,0).(1分) 设抛物线CND为y=-(x-k)2+2(2分) 将C点坐标代入得: -(13-k)2+2=0 解得:k1=13-2(舍去),k2=6+4+2≈6+7+5=18(3分) 令y=0,0=-(x-18)2+2,x1=18-2(舍去),x2=18+2≈23, ∴BD=23-6=17(米). 解法三:由解法二知,k=18, 所以CD=2(18-13)=10, 所以BD=(13-6)+10=17. 答:他应再向前跑17米.(4分)
复制答案
考点分析:
相关试题推荐
已知抛物线y1=x2-2x+c的部分图象如图1所示.
(1)求c的取值范围;
(2)若抛物线经过点(0,-1),试确定抛物线y1=x2-2x+c的解析式;
(3)若反比例函数manfen5.com 满分网的图象经过(2)中抛物线上点(1,a),试在图2所示直角坐标系中,画出该反比例函数及(2)中抛物线的图象,并利用图象比较y1与y2的大小.

manfen5.com 满分网 查看答案
在平面直角坐标系中,已知二次函数y=a(x-1)2+k的图象与x轴相交于点A,B,顶点为C,点D在这个二次函数图象的对称轴上.若四边形ACBD是一个边长为2且有一个内角为60°的菱形.求此二次函数的表达式.

manfen5.com 满分网 查看答案
如图,已知平面直角坐标系xOy中,点A(m,6),B(n,1)为两动点,其中0<m<3,连接OA,OB,OA⊥OB
(1)求证:mn=-6;
(2)当S△AOB=10时,抛物线经过A,B两点且以y轴为对称轴,求抛物线对应的二次函数的关系式.

manfen5.com 满分网 查看答案
如图,抛物线y=ax2+bx-4a经过A(-1,0)、C(0,4)两点,与x轴交于另一点B.
(1)求抛物线的解析式;
(2)已知点D(m,m+1)在第一象限的抛物线上,求点D关于直线BC对称的点的坐标.

manfen5.com 满分网 查看答案
已知抛物线y=x2+bx+c经过A(1,0),B(0,2)两点,顶点为D.
(1)求抛物线的解析式;
(2)将△OAB绕点A顺时针旋转90°后,点B落到点C的位置,将抛物线沿y轴平移后经过点C,求平移后所得图象的函数关系式.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.