综合应用与探究
超市购进一批20元/千克的绿色食品,如果以30元/千克销售,那么每天可售出400千克.由销售经验知,每天销售量y(千克)与销售单价x(元)(x≥30)存在如下图所示的一次函数关系式.
(1)试求出y与x的函数关系式;
(2)设超市销售该绿色食品每天获得利润P元,当销售单价为何值时,每天可获得最大利润?最大利润是多少?
(3)根据市场调查,该绿色食品每天可获利润不超过4480元,现该超市经理要求每天利润不得低于4180元,请你帮助该超市确定绿色食品销售单价x的范围(直接写出答案).
考点分析:
相关试题推荐
如图,足球场上守门员在O处开出一高球,球从离地面1米的A处飞出(A在y轴上),运动员乙在距O点6米的B处发现球在自己头的正上方达到最高点M,距地面约4米高,球落地后又一次弹起.据实验测算,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.
(1)求足球开始飞出到第一次落地时,该抛物线的表达式.
(2)足球第一次落地点C距守门员多少米?(取4
=7)
(3)运动员乙要抢到第二个落点D,他应再向前跑多少米?(取
=5)
查看答案
已知抛物线y
1=x
2-2x+c的部分图象如图1所示.
(1)求c的取值范围;
(2)若抛物线经过点(0,-1),试确定抛物线y
1=x
2-2x+c的解析式;
(3)若反比例函数
的图象经过(2)中抛物线上点(1,a),试在图2所示直角坐标系中,画出该反比例函数及(2)中抛物线的图象,并利用图象比较y
1与y
2的大小.
查看答案
在平面直角坐标系中,已知二次函数y=a(x-1)
2+k的图象与x轴相交于点A,B,顶点为C,点D在这个二次函数图象的对称轴上.若四边形ACBD是一个边长为2且有一个内角为60°的菱形.求此二次函数的表达式.
查看答案
如图,已知平面直角坐标系xOy中,点A(m,6),B(n,1)为两动点,其中0<m<3,连接OA,OB,OA⊥OB
(1)求证:mn=-6;
(2)当S
△AOB=10时,抛物线经过A,B两点且以y轴为对称轴,求抛物线对应的二次函数的关系式.
查看答案
如图,抛物线y=ax
2+bx-4a经过A(-1,0)、C(0,4)两点,与x轴交于另一点B.
(1)求抛物线的解析式;
(2)已知点D(m,m+1)在第一象限的抛物线上,求点D关于直线BC对称的点的坐标.
查看答案