满分5 > 初中数学试题 >

如图,在△ABC中,AB=AC,AD⊥BC垂足是D,AN是∠BAC的外角∠CAM...

如图,在△ABC中,AB=AC,AD⊥BC垂足是D,AN是∠BAC的外角∠CAM的平分线,CE⊥AN,垂足是E,连接DE交AC于F.
①求证:四边形ADCE为矩形;
②求证:DF∥AB,DF=manfen5.com 满分网
③当△ABC满足什么条件时,四边形ADCE为正方形,简述你的理由.

manfen5.com 满分网
(1)先根据AB=AC,AD⊥BC垂足是D,得AD平分∠BAC,然后根据AE是△ABC的外角平分线,可求出AN∥BC,故∠DAE=∠ADC=∠AEC=90°,所以四边形ADCE为矩形; (2)根据四边形ADCE是矩形,可知F是AC的中点,由AB=AC,AD平分∠BAC可知D是BC的中点,故DF是△ABC的中位线,即DF∥AB,DF=; (3)根据矩形的性质可知当△ABC是等腰直角三角形时,则∠5=∠2=45°,利用等腰三角形的性质定理可知对应边AD=CD.再运用临边相等的矩形是正方形.问题得证. 证明:(1)∵AB=AC,AD⊥BC垂足是D, ∴AD平分∠BAC,∠B=∠5, ∴∠1=∠2, ∵AE是△ABC的外角平分线, ∴∠3=∠4, ∵∠1+∠2+∠3+∠4=180°, ∴∠2+∠3=90°, 即∠DAE=90°, 又∵AD⊥BC, ∴∠ADC=90°, 又∵CE⊥AE, ∴∠AEC=90°, ∴四边形ADCE是矩形. (2)∵四边形ADCE是矩形, ∴AF=CF=AC, ∵AB=AC,AD平分∠BAC, ∴BD=CD=BC, ∴DF是△ABC的中位线, 即DF∥AB,DF=. (3)当△ABC是等腰直角三角形时,四边形ADCE为正方形. ∵在Rt△ABC中,AD平分∠BAC ∴∠5=∠2=∠3=45°, ∴AD=CD, 又∵四边形ADCE是矩形, ∴矩形ADCE为正方形.
复制答案
考点分析:
相关试题推荐
某商店进了一批服装,进货单价为50元,如果按每件60元出售,可销售800件,如果每件提价1元出售,其销售量就减少20件;现在要获利12 000元,且销售成本不超过24 000元,问这种服装销售单价确定多少为宜?这时应进多少服装?
查看答案
如图,Rt△ABO的顶点A是双曲线y=manfen5.com 满分网与直线y=-x-(k+1)在第二象限的交点.AB⊥x轴于B,且S△ABO=manfen5.com 满分网
(1)求这两个函数的解析式;
(2)求直线与双曲线的两个交点A、C的坐标和△AOC的面积.

manfen5.com 满分网 查看答案
一布袋中有红、黄、白三种颜色的球各一个,它们除颜色外其它都一样.小亮从布袋中摸出一个球后放回去摇匀,再摸出一个球.请你利用列举法(列表或画树状图)分析并求出小亮两次都能摸到白球的概率. 查看答案
已知:如图,AB=AC=BC=BD,E是AB的中点,
求证:DC=2CE.
manfen5.com 满分网 查看答案
先化简,再求值:manfen5.com 满分网,其中a=manfen5.com 满分网查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.