满分5 > 初中数学试题 >

如图,直线l经过⊙O的圆心O,且与⊙O交于A、B两点,点C在⊙O上,且∠AOC=...

如图,直线l经过⊙O的圆心O,且与⊙O交于A、B两点,点C在⊙O上,且∠AOC=30°,点P是直线l上的一个动点(与圆心O不重合),直线CP与⊙O相交于点Q.是否存在点P,使得QP=QO;若存在,求出相应的∠OCP的大小;若不存在,请简要说明理由.

manfen5.com 满分网
点P是直线l上的一个动点,因而点P与线段AO有三种位置关系,在线段AO上,点P在OB上,点P在OA的延长线上.分这三种情况进行讨论即可. 【解析】 ①根据题意,画出图(1), 在△QOC中,OC=OQ, ∴∠OQC=∠OCP, 在△OPQ中,QP=QO, ∴∠QOP=∠QPO, 又∵∠AOC=30°, ∴∠QPO=∠OCP+∠AOC=∠OCP+30°, 在△OPQ中,∠QOP+∠QPO+∠OQC=180°, 即(∠OCP+30°)+(∠OCP+30°)+∠OCP=180°, 整理得,3∠OCP=120°, ∴∠OCP=40°. ②当P在线段OA的延长线上(如图2) ∵OC=OQ, ∴∠OQP=(180°-∠QOC)×①, ∵OQ=PQ, ∴∠OPQ=(180°-∠OQP)×②, 在△OQP中,30°+∠QOC+∠OQP+∠OPQ=180°③, 把①②代入③得∠QOC=20°,则∠OQP=80° ∴∠OCP=100°; ③当P在线段OA的反向延长线上(如图3), ∵OC=OQ, ∴∠OCP=∠OQC=(180°-∠COQ)×①, ∵OQ=PQ, ∴∠P=(180°-∠OQP)×②, ∵∠AOC=30°, ∴∠COQ+∠POQ=150°③, ∵∠P=∠POQ,2∠P=∠OCP=∠OQC④, ①②③④联立得 ∠P=10°, ∴∠OCP=180°-150°-10°=20°. 故答案为:40°、20°、100°.
复制答案
考点分析:
相关试题推荐
如图,⊙O的半径OD经过弦AB(不是直径)的中点C,过AB的延长线上一点P作⊙O的切线PE,E为切点,PE∥OD;延长直径AG交PE于点H;直线DG交OE于点F,交PE于点K.
(1)求证:四边形OCPE是矩形;
(2)求证:HK=HG;
(3)若EF=2,FO=1,求KE的长.

manfen5.com 满分网 查看答案
在一块长16m,宽12m的矩形荒地上,要建造一个花园,要求花园面积是荒地面积的一半,下面分别是小华与小芳的设计方案.manfen5.com 满分网
图1manfen5.com 满分网图2manfen5.com 满分网

(1)同学们都认为小华的方案是正确的,但对小芳方案是否符合条件有不同意见,你认为小芳的方案符合条件吗?若不符合,请用方程的方法说明理由;
(2)你还有其他的设计方案吗?请在图中画出你所设计的草图,将花园部分涂上阴影,并加以说明.
manfen5.com 满分网
查看答案
某中学开展演讲比赛活动,九(1)、九(2)班根据初赛成绩各选出5manfen5.com 满分网名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如图所示.
(1)根据右图,分别求出两班复赛的平均成绩和方差;
(2)根据(1)的计算结果,分析哪个班级的复赛成绩比较稳定.
查看答案
如图是一个装有水的水管的截面,已知水管的直径是100cm,装有水的液面宽度为AB=60cm,则水管中水的最大深度为多少?

manfen5.com 满分网 查看答案
已知:四边形ABCD,AD∥BC,AB=DC,(图中A、B、D三点已确定,且AD∥BE)
(1)利用尺规作图确定C点的位置,并连接DC.(不写作法,保留作图痕迹)
(2)若∠B=60°,AD=2,AB=3,求四边形的周长.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.