满分5 > 初中数学试题 >

如图,直径为13的⊙O′经过原点O,并且与x轴、y轴分别交于A、B两点,线段OA...

如图,直径为13的⊙O′经过原点O,并且与x轴、y轴分别交于A、B两点,线段OA、OB(OA>OB)的长分别是方程x2+kx+60=0的两根.
(1)求线段OA、OB的长;
(2)已知点C在劣弧OA上,连接BC交OA于D,当OC2=CD•CB时,求C点的坐标;
(3)在(2)问的条件下,在⊙O′上是否存在点P,使S△POD=S△ABD?若存在,求出点P的坐标;若不存在,请说明理由.

manfen5.com 满分网
(1)根据根与系数的关系写出OA+OB和OA•OB的值.连接AB,根据90°的圆周角所对的弦是直径,再结合勾股定理列方程求解. (2)若OC2=CD•CB,则三角形OCB相似于三角形DCO,则∠COD=∠CBO.又∠COD=∠CBA,则∠CBO=∠CBA,所以点C是弧OA的中点.连接O′C,根据垂径定理的推论,得O′E⊥OA.再进一步根据垂径定理和勾股定理进行计算即可. (3)首先求得直线BC的解析式,求得D的坐标,根据面积相等即可求得P的纵坐标,根据圆的直径即可作出判断. 【解析】 (1)连接AB,∵∠BOA=90°, ∴AB为直径,根与系数关系得OA+OB=-k,OA•OB=60; 根据勾股定理,得OA2+OB2=169, 即(OA+OB)2-2OA•OB=169, 解得k2=289,∴k=±17(正值舍去). 则有方程x2-17x+60=0,x=12,或5. 又OA>OB, ∴OA=12,OB=5. (2)若OC2=CD•CB,则△OCB∽△DCO, ∴∠COD=∠CBO, 又∵∠COD=∠CBA, ∴∠CBO=∠CBA, 所以点C是弧OA的中点. 连接O′C交OA于点E,根据垂径定理的推论,得O′E⊥OA, 根据垂径定理,得OE=6, 根据勾股定理,得O′E=2.5, ∴CE=4,即C(6,-4). (3)设直线BC的解析式是y=kx+b, 则 解得:, 则直线BC的解析式是y=-x+5, 令y=0,解得:x=, 则OD=,AD=12-=, ∴S△ABD=×5×=. 若S△ABD=2S△OBD,P到x轴的距离是h, 则×h=,解得:h=13. 而⊙O′的直径是13,因而P不能在⊙O′上, 故P不存在.
复制答案
考点分析:
相关试题推荐
将三块边长均为10cm的正方形煎饼不重叠地平放在圆碟内,则圆碟的直径至少是多少?(不考虑其他因素,精确到0.1cm)
查看答案
如图,已知圆内接△ABC中,AB>AC,D为manfen5.com 满分网的中点,DE⊥AB于E,求证:BD2-AD2=AB•AC.

manfen5.com 满分网 查看答案
如图,已知四边形ABCD内接于直径为3的圆O,对角线AC是直径,对角线AC和BD的交点是P,AB=BD,且PC=0.6,求四边形ABCD的周长.

manfen5.com 满分网 查看答案
如图1,在平面上,给定了半径为r的圆O,对于任意点P,在射线OP上取一点P′,使得OP•OP′=r2,这把点P变为点P的变换叫做反演变换,点P与点P′叫做互为反演点.
(1)如图2,⊙O内外各一点A和B,它们的反演点分别为A和B′.求证:∠A′=∠B;
(2)如果一个图形上各点经过反演变换得到的反演点组成另一个图形,那么这两个图形叫做互为反演图形.
manfen5.com 满分网
①选择:如果不经过点O的直线l与⊙O相交,那么它关于⊙O的反演图形是( )
A、一个圆;B、一条直线;C、一条线段;D、两条射线
②填空:如果直线l与⊙O相切,那么它关于⊙O的反演图形是______,该图形与圆O的位置关系是______
查看答案
不过圆心的直线l交⊙O于C、D两点,AB是⊙O的直径,AE⊥l于E,BF⊥l于F.
(1)如图,在下面三个圆中分别补画出满足上述条件的具有不同位置关系的图形;
(2)请你观察(1)中所画的图形,写出一个各图都具有的两条线段相等的结论(不再标注其它字母,找结论的过程中所连辅助线不能出现在结论中,不写推理过程);
(3)请你选择(1)中的一个图形,证明(2)所得出的结论.
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.