满分5 >
初中数学试题 >
圆锥的截面不可能为( ) A.等腰三角形 B.平行四边形 C.圆 D.椭圆
圆锥的截面不可能为( )
A.等腰三角形
B.平行四边形
C.圆
D.椭圆
考点分析:
相关试题推荐
点A为数轴上的表示-2的动点,当点A沿数轴移动4个单位长度到点B时,点B所表示的有理数为( )
A.2
B.-6
C.2或-6
D.不同于以上答案
查看答案
若|a|=5,|b|=3,则|a-b|等于( )
A.2
B.8
C.2或8
D.±2或±8
查看答案
如图,在平面直角坐标系xOy中,抛物线y=-
x
2+bx+c与x轴交于A(1,0)、B(5,0)两点.
(1)求抛物线的解析式和顶点C的坐标;
(2)设抛物线的对称轴与x轴交于点D,将∠DCB绕点C按顺时针方向旋转,角的两边CD和CB与x轴分别交于点P、Q,设旋转角为α(0°<α≤90°).
①当α等于多少度时,△CPQ是等腰三角形?
②设BP=t,AQ=s,求s与t之间的函数关系式.
查看答案
如图,在平面直角坐标系中,点A、C的坐标分别为(-1,0)、(0,-
),点B在x轴上.已知某二次函数的图象经过A、B、C三点,且它的对称轴为直线x=1,点P为直线BC下方的二次函数图象上的一个动点(点P与B、C不重合),过点P作y轴的平行线交BC于点F.
(1)求该二次函数的解析式;
(2)若设点P的横坐标为m,用含m的代数式表示线段PF的长;
(3)求△PBC面积的最大值,并求此时点P的坐标.
查看答案
如图,在平面直角坐标系中,四边形OABC是梯形,OA∥BC,点A的坐标为(6,0),点B的坐标为(3,4),点C在y轴的正半轴上.动点M在OA上运动,从O点出发到A点;动点N在AB上运动,从A点出发到B点.两个动点同时出发,速度都是每秒1个单位长度,当其中一个点到达终点时,另一个点也随即停止,设两个点的运动时间为t(秒).
(1)求线段AB的长;当t为何值时,MN∥OC;
(2)设△CMN的面积为S,求S与t之间的函数解析式,并指出自变量t的取值范围;S是否有最小值?若有最小值,最小值是多少?
(3)连接AC,那么是否存在这样的t,使MN与AC互相垂直?若存在,求出这时的t值;若不存在,请说明理由.
查看答案