已知等腰三角形ABC的两个顶点分别是A(0,1)、B(0,3),第三个顶点C在x轴的正半轴上.关于y轴对称的抛物线y=ax
2+bx+c经过A、D(3,-2)、P三点,且点P关于直线AC的对称点在x轴上.
(1)求直线BC的解析式;
(2)求抛物线y=ax
2+bx+c的解析式及点P的坐标;
(3)设M是y轴上的一个动点,求PM+CM的取值范围.
查看答案
阅读材料,解答问题.
当抛物线的表达式中含有字母系数时,随着系数中的字母取值的不同,抛物线的顶点坐标出将发生变化.
例如:由抛物线y=x
2-2mx+m
2+2m-1,…①
有y=(x-m)
2+2m-1,…②
∴抛物线的顶点坐标为(m,2m-1)
即x=m …③
y=2m-1 …④
当m的值变化时,x、y的值也随之变化,因而y值也随x值的变化而变化
将③代入④,得y=2x-1…⑤
可见,不论m取任何实数,抛物线顶点的纵坐标y和横坐标x都满足关系式y=2x-1.
解答问题:
(1)在上述过程中,由①到②所用的数学方法是______,由③、④到⑤所用到的数学方法是______.
(2)根据阅读材料提供的方法,确定抛物线y=x
2-2mx+2m
2-3m+1顶点的纵坐标y与横坐标x之间的表达式.
查看答案