满分5 > 初中数学试题 >

如图,在梯形ABCD中,AD∥BC,∠ABC=90°,AB=20cm,CD=25...

如图,在梯形ABCD中,AD∥BC,∠ABC=90°,AB=20cm,CD=25cm.动点P、Q同时从A点出发:点P以3cm/s的速度沿A⇒D⇒C的路线运动,点Q以4cm/s的速度沿A⇒B⇒C的路线运动,且P、Q两点同时到达点C.
(1)求梯形ABCD的面积;
(2)设P、Q两点运动的时间为t(秒),四边形APCQ的面积为S(cm2),试求S与t之间的函数关系式,并写出自变量t的取值范围;
(3)在(2)的条件下,是否存在这样的t,使得四边形APCQ的面积恰为梯形ABCD的面积的manfen5.com 满分网?若存在,求出t的值;若不存在,请说明理由.

manfen5.com 满分网
(1)过点D作DE⊥BC于点E,由已知得AD=BE,DE=AB=20cm.在Rt△DEC中,根据勾股定理得EC=15cm.由题意得 =,由此可以求出AD的长,然后可以求出梯形的面积; (2)设P、Q两点运动的时间为t,则点P运动的路程为3t(cm),点Q运动的路程为4t(cm). ①当0<t≤时,P在AD上运动,Q在AB上运动,此时四边形APCQ的面积S=S梯形ABCD-S△BCQ-S△CDP=70t; ②当<t≤5时,P在DC上运动,Q在AB上运动,此时四边形APCQ的面积S=S梯形ABCD-S△BCQ-S△ADP=34t+60; ③当5<t<10时,P在DC上运动,Q在BC上运动,此时四边形APCQ的面积S=S梯形ABCD-S△ABQ-S△ADP=-46t+460. (3)根据(2)的函数关系式,分别把已知梯形面积的代入其中就可以求出相应的t,然后结合已知条件进行取舍 最后得到t的取值. 【解析】 (1)过点D作DE⊥BC于点E,由已知得AD=BE,DE=AB=20cm. 在Rt△DEC中,根据勾股定理得EC=15cm.由题意得=, ∴=.解得AD=5. ∴梯形ABCD的面积===250(cm2). (2)当P、Q两点运动的时间为t(秒)时,点P运动的路程为3t(cm),点Q运动的路程为4t(cm). ①当0<t≤时,P在AD上运动,Q在AB上运动. 此时四边形APCQ的面积S=S梯形ABCD-S△BCQ-S△CDP=70t. ②当<t≤5时,P在DC上运动,Q在AB上运动. 此时四边形APCQ的面积S=S梯形ABCD-S△BCQ-S△ADP=34t+60. ③当5<t<10时,P在DC上运动,Q在BC上运动. 此时四边形APCQ的面积S=S梯形ABCD-S△ABQ-S△ADP=-46t+460. (3)①当0<t≤时,由S=70t=250×,解得t=. ②当<t≤5时,由S=34t+60=250×,解得t=. 又∵<t≤5, ∴t=不合题意,舍去. ③当5<t<10时,由S=-46t+460=250×, 解得t=. ∴当t=或t=时,四边形APCQ的面积恰为梯形ABCD的面积的.
复制答案
考点分析:
相关试题推荐
在一次研究性学习活动中,某小组将两张互相重合的正方形纸片ABCD和EFGH的中心O用图钉固定住,保持正方形ABCD不动,顺时针旋转正方形EFGH,如图所示.
(1)小组成员经观察、测量,发现在旋转过程中,有许多有趣的结论.下面是旋转角度小于90°时他们得到的一些猜想:
①ME=MA;
②两张正方形纸片的重叠部分的面积为定值;
③∠MON保持45°不变.
请你对这三个猜想作出判断(正确的在序号后的括号内打上“√”,错误的打上“×”):
①( );②( );③( )
(2)小组成员还发现:(1)中的△EMN的面积S随着旋转角度∠AOE的变化而变化.请你指出在怎样的位置时△EMN的面积S取得最大值.(不必证明)
(3)上面的三个猜想中若有正确的,请选择其中的一个给予证明;若都是错误的,请选择其一说明理由.

manfen5.com 满分网 查看答案
如图,已知抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,D为OC的中点,直线AD交抛物线于点E(2,6),且△ABE与△ABC的面积之比为3:2.
(1)求这条抛物线对应的函数关系式;
(2)连接BD,试判断BD与AD的位置关系,并说明理由;
(3)连接BC交直线AD于点M,在直线AD上,是否存在这样的点N(不与点M重合),使得以A、B、N为顶点的三角形与△ABM相似?若存在,请求出点N的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
无锡市一水果销售公司,需将一批大浮杨梅运往某地,有汽车、火车这两种运输工具可供选择,且两者行驶的路程相等.主要参考数据如下:
运输工具途中平均速度
(单位:千米/时)
途中平均费用
(单位:元/千米)
装卸时间
(单位:小时)
装卸费用
(单位:元)
汽车80101480
火车120831440
若这批大浮杨梅在运输过程中(含装卸时间)的损耗为120元/时,那么你认为采用哪种运输工具比较好(即运输所需费用与损耗之和较少)?
查看答案
某校把一块沿河的三角形废地(如图)开辟为生物园,已知∠ACB=90°,∠CAB=54°,BC=60米.
(1)现学校准备从点C处向河岸AB修一条小路CD,使得CD将生物园分割成面积相等的两部分,请你用直尺和圆规在图中作出小路CD(保留作图痕迹);
(2)为便于浇灌,学校在点C处建了一个蓄水池,利用管道从河中取水,已知每铺设1米管道费用为50元,求铺设管道的最低费用(精确到1元).
参考数据:tan36°=0.73,sin36°=0.59,cos36°=0.81.

manfen5.com 满分网 查看答案
某班某天音乐课上学习了《感恩的心》这一首歌,该班班长由此歌名产生了一个想法,于是就“每年过生日时,你是否会用语言或其他方式向母亲道一声‘谢谢’”这个问题对该校初三年级30名同学进行了调查.调查结果如下:
有时有时
有时有时
有时有时
(1)在这次抽样调查中,回答“否”的频数为______,频率为______
(2)请你选择适当的统计图描述这组数据;
(3)通过对这组数据的分析,你有何感想?(用一、两句话表示即可)
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.