在一次数学兴趣小组的活动课上,师生有下面的一段对话,请你阅读完后再解答问题.
老师:同学们,今天我们来探索如下方程的解法:(x
2-x)
2-(x
2-x)+12=0
学生甲:老师,这个方程先去括号,再合并同类项,行吗?
老师:这样,原方程可整理为x
4-2x
3-7x
2+8x+12=0,次数变成了4次,用现有知识无法解答.同学们再观察观察,看看这个方程有什么特点?
学生乙:老师,我发现x
2-x是整体出现的,最好不要去括号!
老师:很好,我们把x
2-x看成一个整体,用y表示,即x
2-x=y,那么原方程就变为y
2+8y+12=0.
全体学生:(同学们都特别高兴)噢,这不是我们熟悉的一元二次方程吗?!
老师:大家真会观察和思考,太棒了!显然一元二次方程y
2+8y+12=0的根是y
1=6,y
2=2,那么就有x
2-x=6或x
2-x=2.
学生丙:对啦,再解这两个方程,可得原方程的根x
1=3,x
2=-2,x
3=2,x
4=-1,嗬,有这么多根啊!
老师:同学们,通常我们把这种方法叫做换元法.在这里使用它的最大妙处在于降低了原方程的次数,这是一种重要的转化方法.
全体同学:OK,换元法真神奇!
现在,请你用换元法解下列分式方程:
.
考点分析:
相关试题推荐
如图,已知AB是⊙O的直径,点C在⊙O上,且AB=13,BC=5.
(1)求sin∠BAC的值;
(2)如果OD⊥AC,垂足为D,求AD的长;
(3)求图中阴影部分的面积.(精确到0.1)
查看答案
为了预防流感,某学校在休息天用药熏消毒法对教室进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间t(小时)成正比;药物释放完毕后,y与t的函数关系式为y=
(a为常数),如图所示.据图中提供的信息,解答下列问题:
(1)写出从药物释放开始,y与t之间的两个函数关系式及相应的自变量的取值范围;
(2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进入教室,那么从药物释放开始,至少需要经过多少小时后,学生才能进入教室?
查看答案
如图△ABC与△CDE都是等边三角形,点E、F分别在AC、BC上,且EF∥AB
(1)求证:四边形EFCD是菱形;
(2)设CD=4,求D、F两点间的距离.
查看答案
又到了一年中的春游季节,某班学生利用周末到白塔山去参观“晏阳初博物馆”.下面是两位同学的一段对话:
甲:我站在此处看塔顶仰角为60°;
乙:我站在此处看塔顶仰角为30°;
甲:我们的身高都是1.5m;
乙:我们相距20m.
请你根据两位同学的对话,计算白塔的高度.(精确到1米)
查看答案
如图,是小明设计用手电来测量古城墙高度的示意图.点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好射到古城墙CD的顶端C处,且测得AB=1.2m,BP=1.8m,PD=12m,求古城墙的高度CD.
查看答案