满分5 > 初中数学试题 >

如图,已知点A的坐标是(-1,0),点B的坐标是(9,0),以AB为直径作⊙O′...

如图,已知点A的坐标是(-1,0),点B的坐标是(9,0),以AB为直径作⊙O′,交y轴的负半轴于点C,连接AC、BC,过A、B、C三点作抛物线.
(1)求点C的坐标及抛物线的解析式;
(2)点E是AC延长线上一点,∠BCE的平分线CD交⊙O′于点D,求点D的坐标;并直接写出直线BC、直线BD的解析式;
(3)在(2)的条件下,抛物线上是否存在点P,使得∠PDB=∠CBD,若存在,请求出点P的坐标,若不存在,请说明理由.

manfen5.com 满分网
(1)已知了A、B两点的坐标即可得出OA、OB的长,在直角三角形ACB中由于OC⊥AB,因此可用射影定理求出OC的长,即可得出C点的坐标.然后用待定系数法即可求出抛物线的解析式; (2)本题的关键是得出D点的坐标,CD平分∠BCE,如果连接O′D,那么根据圆周角定理即可得出∠DO′B=2∠BCD=∠BCE=90°由此可得出D的坐标为(4,-5).根据B、D两点的坐标即可用待定系数法求出直线BD的解析式; (3)本题要分两种情况进行讨论: ①过D作DP∥BC,交D点右侧的抛物线于P,此时∠PDB=∠CBD,可先用待定系数法求出直线BC的解析式,然后根据BC与DP平行,那么直线DP的斜率与直线BC的斜率相同,因此可根据D的坐标求出DP的解析式,然后联立直线DP的解析式和抛物线的解析式即可求出交点坐标,然后将不合题意的舍去即可得出符合条件的P点. ②同①的思路类似,先作与∠CBD相等的角:在O′B上取一点N,使BN=BM.可通过证△NBD≌△MDB,得出∠NDB=∠CBD,然后同①的方法一样,先求直线DN的解析式,进而可求出其与抛物线的交点即P点的坐标.综上所述可求出符合条件的P点的值. 【解析】 (1)∵以AB为直径作⊙O′,交y轴的负半轴于点C, ∴∠OCA+∠OCB=90°, 又∵∠OCB+∠OBC=90°, ∴∠OCA=∠OBC, 又∵∠AOC=∠COB=90°, ∴△AOC∽△COB, ∴. 又∵A(-1,0),B(9,0), ∴, 解得OC=3(负值舍去). ∴C(0,-3), 故设抛物线解析式为y=a(x+1)(x-9), ∴-3=a(0+1)(0-9),解得a=, ∴二次函数的解析式为y=(x+1)(x-9), 即y=x2-x-3. (2)∵AB为O′的直径,且A(-1,0),B(9,0), ∴OO′=4,O′(4,0), ∵点E是AC延长线上一点,∠BCE的平分线CD交⊙O′于点D, ∴∠BCD=∠BCE=×90°=45°, 连接O′D交BC于点M, 则∠BO′D=2∠BCD=2×45°=90°,OO′=4,O′D=AB=5. ∴O′D⊥x轴 ∴D(4,-5). ∴设直线BD的解析式为y=kx+b, ∴, 解得 ∴直线BD的解析式为y=x-9. ∵C(0,-3), 设直线BC的解析式为:y=ax+b, ∴, 解得:, ∴直线BC的解析式为:y=x-3. (3)假设在抛物线上存在点P,使得∠PDB=∠CBD, 解法一:设射线DP交⊙O′于点Q,则 =. 分两种情况(如图所示): ①∵O′(4,0),D(4,-5),B(9,0),C(0,-3). ∴把点C、D绕点O′逆时针旋转90°,使点D与点B重合,则点C与点Q1重合, 因此,点Q1(7,-4)符合 =, ∵D(4,-5),Q1(7,-4), ∴用待定系数法可求出直线DQ1解析式为y=x-. 解方程组 得 ∴点P1坐标为( ,),坐标为( ,)不符合题意,舍去. ②∵Q1(7,-4), ∴点Q1关于x轴对称的点的坐标为Q2(7,4)也符合 =. ∵D(4,-5),Q2(7,4). ∴用待定系数法可求出直线DQ2解析式为y=3x-17. 解方程组 得 , 即 ∴点P2坐标为(14,25),坐标为(3,-8)不符合题意,舍去. ∴符合条件的点P有两个:P1( ,),P2(14,25). 解法二:分两种情况(如图所示): ①当DP1∥CB时,能使∠PDB=∠CBD. ∵B(9,0),C(0,-3). ∴用待定系数法可求出直线BC解析式为y=x-3. 又∵DP1∥CB, ∴设直线DP1的解析式为y=x+n. 把D(4,-5)代入可求n=-, ∴直线DP1解析式为y=x-. 解方程组 得 ∴点P1坐标为( ,)或( ,)(不符合题意舍去). ②在线段O′B上取一点N,使BN=DM时,得△NBD≌△MDB(SAS), ∴∠NDB=∠CBD. 由①知,直线BC解析式为y=x-3. 取x=4,得y=-, ∴M(4,-), ∴O′N=O′M=, ∴N( ,0), 又∵D(4,-5), ∴直线DN解析式为y=3x-17. 解方程组 得 , ∴点P2坐标为(14,25),坐标为(3,-8)不符合题意,舍去. ∴符合条件的点P有两个:P1( ,),P2(14,25). 解法三:分两种情况(如图所示): ①求点P1坐标同解法二. ②过C点作BD的平行线,交圆O′于G, 此时,∠GDB=∠GCB=∠CBD. 由(2)题知直线BD的解析式为y=x-9, 又∵C(0,-3) ∴可求得CG的解析式为y=x-3, 设G(m,m-3),作GH⊥x轴交于x轴与H, 连接O′G,在Rt△O′GH中,利用勾股定理可得,m=7, 由D(4,-5)与G(7,4)可得, DG的解析式为y=3x-17, 解方程组 得 , 即 ∴点P2坐标为(14,25),坐标为(3,-8)不符合题意舍去. ∴符合条件的点P有两个:P1( ,),P2(14,25).
复制答案
考点分析:
相关试题推荐
公司准备投资开发A、B两种新产品,通过市场调研发现:如果单独投资A种产品,则所获利润(万元)与投资金额x(万元)之间满足正比例函数关系:yA=kx;如果单独投资B种产品,则所获利润(万元)与投资金额x(万元)之间满足二次函数关系:yB=ax2+bx.根据公司信息部的报告,yA,yB(万元)与投资金额x(万元)的部分对应值(如表).
x15
yA0.63
yB2.810
(1)填空:yA=______;yB=______
(2)如果公司准备投资20万元同时开发A,B两种新产品,请你设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少万元?
(3)如果公司采用以下投资策略:相同的投资金额哪种方式获利大就选哪种,且财务部给出的投资金额为10至15万元.请你帮助保障部预测(直接写出结果):公司按这种投资策略最少可获利多少万元?
查看答案
为节能减排,08年12月5日国家有关部委联合发布公告,就《成品油税费改革方案》向社会公开征求意见.对于一般的轿车用户来说,相关信息主要有两条:每年减少养路费等2400元;增加汽油的单位税额.对使用汽油的用车族来说具有以下计算公式:每年行驶的里程数y(公里)×每公里油耗x(升/公里)×0.8元=征收燃油税后每年每车多支出的费用.在总费用不变的前提下(当征收燃油税后每年每车多支出的费用=2400元时,征税前后总费用不变;少于2400元时,征税后更省钱)解答下列问题:
(1)写出每年行驶里程数y(公里)与每公里油耗x(升/公里)之间的函数关系式;
(2)小明的车(伊兰特)每公里油耗约0.08升,则年行驶多少公里时,总费用不变;
(3)已知不同车型的油耗如下表所示:
车型吉利豪情海南马自达凯美瑞别克君威
油耗
(升/百公里
781011
小亮年行驶里程数估计在2.8万公里~4万公里之间.若只考虑使用费用,请直接写出上述车型中可供小亮选择的车型.
查看答案
manfen5.com 满分网在边长为1的正方形网格中,有形如帆船的图案①和半径为2的⊙P.

(1)将图案①,绕B顺时针旋转90°,画出旋转变换后的图象;
(2)以点M为位似中心,在网格中将图案①放大到原来的2倍,画出放大后的图象,并在放大后的图象中标出线段AB的对应线段A′B′;
(3)⊙P在(2)所画图象内部的弧长为______
查看答案
某工厂接受一批支援四川省汶川灾区抗震救灾帐篷的生产任务.根据要求,帐篷的一个横截面框架由等腰三角形和矩形组成(如图所示).已知等腰△ABE的底角∠AEB=θ,且tanθ=manfen5.com 满分网,矩形BCDE的边CD=2BC,这个横截面框架(包括BE)所用的钢管总长为15m,求帐篷的篷顶A到底部CD的距离.(结果精确到0.1m)

manfen5.com 满分网 查看答案
将边长分别为2、3、5的三个正方形按图所示的方式排列,则图中阴影部分的面积为   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.