满分5 > 初中数学试题 >

如图,BC是⊙O的直径,点A在圆上,且AB=AC=4. P为AB上一点,过P作P...

如图,BC是⊙O的直径,点A在圆上,且AB=AC=4. P为AB上一点,过P作PE⊥AB分别交BC、OA于E、F.
(1)设AP=1,求△OEF的面积;
(2)设AP=a(0<a<2),△APF、△OEF的面积分别记为S1、S2
①若S1=S2,求a的值;
②若S=S1+S2,是否存在一个实数a,使S<manfen5.com 满分网?若存在,求出一个a的值;若不存在,说明理由.

manfen5.com 满分网
(1)易知△AOC、△OEF、△AFP均为等腰直角三角形,因此只需求出OF的长就可得出△OEF的面积,在直角三角形AFP中,根据AP=1,可求得AF=,已知了AB、AC的长可求出OA的长,进而可得出OF的长.也就能求出△OEF的面积. (2)①同(1)可用a表示出△OEF的面积,S2=a2,然后根据S1=S2,可得出关于a的方程,即可求出a的值. ②根据①即可得出关于S,a的函数关系式,然后根据函数的性质即可判断出是否存在使S<的值. 【解析】 (1)∵BC是⊙O的直径, ∴∠BAC=90°, ∵AB=AC ∴∠B=∠C=45°,OA⊥BC, ∴∠1=∠B=45°, ∵PE⊥AB ∴∠2=∠1=45° ∴∠4=∠3=45°, 则△APF、△OEF与△OAB均为等腰直角三角形. ∵AP=l,AB=4, ∴AF=,OA=, ∴OE=OF=, ∴△OEF的面积为•OE•OF=1. (2)①∵FP=AP=a, ∴S1=a2 且AF=, ∴OE=OF=2-a=(2-a), ∴S2=•OE•OF=(2-a)2 ∵S1=S2 ∴a2=(2-a)2 ∴a=4± ∵0<a<2 ∴. ②S=S1+S2=a2+(2-a)2=a2-4a+4=(a-)2+, ∴当时,S取得最小值为, ∵, ∴不存在这样实数a,使S<.
复制答案
考点分析:
相关试题推荐
如图,已知四边形ABCD为⊙O的内接四边形,AB=AD,∠BCD=120°,当⊙O的半径为8cm时,求:△ABD的内切圆面积.

manfen5.com 满分网 查看答案
金路达汽车租赁公司有出租车120辆,每辆汽车的日租金为160元,出租车业务每天供不应求,为适应市场需求,公司准备适当提高日租金,经市场调查发现,一辆汽车的日租金每增加10元,每天出租的汽车相应减少6辆,该公司的每辆汽车日租金提高多少时,可使日租金总额达到19440元?
查看答案
如图,由正方形ABCD的顶点A引一直线分别交BD、CD及BC的延长线于E、F、G,⊙O是△CGF的外接圆,求证:CE和⊙O相切.

manfen5.com 满分网 查看答案
如图,AB是⊙O的直径,AC是弦,AB=2,AC=manfen5.com 满分网
请你在图中画出弦AD,使AD=1,你能画出几条呢?画出图形后求∠CAD的度数.

manfen5.com 满分网 查看答案
如图,已知△ABC和两条相交于O点且夹角为60°的直线m、n.
(1)画出△ABC关于直线m的对称△A1B1C1,再画出△A1B1C1关于直线n的对称△A2B2C2
(2)你认为△A2B2C2可视为△ABC绕着哪一点旋转多少度得到的?

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.