满分5 > 初中数学试题 >

把两个全等的等腰直角三角形ABC和EFG(其直角边长均为4)叠放在一起(如图①)...

把两个全等的等腰直角三角形ABC和EFG(其直角边长均为4)叠放在一起(如图①),且使三角板EFG的直角顶点G与三角板ABC的斜边中点O重合.现将三角板EFG绕O点逆时针旋转(旋转角α满足条件:0°<α<90°),四边形CHGK是旋转过程中两三角板的重叠部分(如图②).
(1)在上述旋转过程中,BH与CK有怎样的数量关系四边形CHGK的面积有何变化?证明你发现的结论;
(2)连接HK,在上述旋转过程中,设BH=x,△GKH的面积为y,求y与x之间的函数关系式,并写出自变量x的取值范围;
(3)在(2)的前提下,是否存在某一位置,使△GKH的面积恰好等于△ABC面积的manfen5.com 满分网?若存在,求出此时x的值;若不存在,说明理由.

manfen5.com 满分网
(1)可将四边形CHGK分成两部分,然后通过证三角形全等,将四边形的面积进行转换来求解.连接CG,可通过证明三角形CGK与三角形BGH全等来得出他们的面积相等,进而将四边形CHGK的面积转换成三角形CGB的面积也就是三角形ABC面积的一半,由此可得出四边形CHGK的面积是4,所以不会改变; (2)连接HK后,根据(1)中得出的四边形CHGK的面积为4,可根据三角形GHK的面积=四边形CHGK的面积-三角形CHK的面积来求,如果BH=x,那么根据(1)的结果CK=x,有BC的长,那么CH=4-x,由此可得出关于x,y的函数关系式.x的取值范围应该大于零小于4; (3)只需将y=×8代入(2)的函数式中,可得出x的值.然后判断x是否符合要求即可. 【解析】 (1)在上述旋转过程中,BH=CK,四边形CHGK的面积不变. 证明:连接CG,KH, ∵△ABC为等腰直角三角形,O(G)为其斜边中点, ∴CG=BG,CG⊥AB, ∴∠ACG=∠B=45°, ∵∠BGH与∠CGK均为旋转角, ∴∠BGH=∠CGK, 在△BGH与△CGK中, ∴△BGH≌△CGK(ASA), ∴BH=CK,S△BGH=S△CGK. ∴S四边形CHGK=S△CHG+S△CGK=S△CHG+S△BGH=S△ABC=××4×4=4, 即:S四边形CHGK的面积为4,是一个定值,在旋转过程中没有变化; (2)∵AC=BC=4,BH=x, ∴CH=4-x,CK=x. 由S△GHK=S四边形CHGK-S△CHK, 得y=4-x(4-x), ∴y=x2-2x+4. 由0°<α<90°,得到BH最大=BC=4, ∴0<x<4; (3)存在. 根据题意,得x2-2x+4=×8, 解这个方程,得x1=1,x2=3, 即:当x=1或x=3时,△GHK的面积均等于△ABC的面积的.
复制答案
考点分析:
相关试题推荐
某工厂现有80台机器,每台机器平均每天生产384件产品,现准备增加一批同类机器以提高生产总量,在试生产中发现,由于其他生产条件没变,因此每增加一台机器,每台机器平均每天将少生产4件产品.
(1)如果增加x台机器,每天的生产总量为y件,请你写出y与x之间的关系式;
(2)增加多少台机器,可以使每天的生产总量最大,最大总量是多少?
查看答案
下面的统计图反映了某中国移动用户5月份手机的使用情况,该用户的通话对象分为三类:市内电话,本地中国移动用户,本地中国联通用户.
(1)该用户5月份通话的总次数为______次;
(2)已知该用户手机的通话均按0.6元/分钟计费,求该用户5月份的话费(通话时间不满1分钟按1分钟计算.例如,某次实际通话时间为1分23秒,按通话时间2分钟计费,话费为1.2元);
(3)当地中国移动公司推出了名为“越打越便宜”的优惠业务,优惠方式为:若与其它中国移动用户通话,第1分钟为0.4元,第2分钟为0.3元.第3分钟起就降为每分钟0.2元,每月另收取基本费10元,其余通话计费方式不变.如果使用了该业务,则该用户5月份的话费会是多少?
manfen5.com 满分网
查看答案
如图,Rt△ABC中,∠C=90°,AC=3,BC=4,以点C为圆心、CA为半径的圆与AB、BC分别交于点D、E.求AB、AD的长.

manfen5.com 满分网 查看答案
农八师石河子市某中学初三(1)班的学生,在一次数学活动课中,来到市游憩广场,测量坐落在广场中心的王震将军的铜像高度,已知铜像底座的高为3.5m.某小组的实习报告如下,请你计算出铜像的高(结果精确到0.1m).
实习报告2003年9月25日
题目1测量底部可以到达的铜像高
manfen5.com 满分网



测量项目  第一次  第二次平均值
BD的长12.3m  11.7m
测倾器CD的高1.32m1.28m
倾斜角α=30°56'α=31°4'

结果

查看答案
已知:如图,AB与CD相交于点O,∠ACO=∠BDO,OC=OD,CE是△ACO的角平分线.请你先作△ODB的角平分线DF(用尺规作图,不要求写出作法与证明,但要保留作图痕迹);再证明CE=DF.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.