“母亲节”到了,九年级(1)班班委发起慰问烈属王大妈的活动,决定在“母亲节”期间全班同学利用课余时间去卖鲜花筹集慰问金.已知同学们从花店按每支1.2元买进鲜花,并按每支3元卖出.
(1)求同学们卖出鲜花的销售额y(元)与销售量x(支)之间的函数关系式;
(2)若从花店购买鲜花的同时,还总共用去40元购买包装材料,求所筹集的慰问金w(元)与销售量x(支)之间的函数关系式;若要筹集不少于500元的慰问金,则至少要卖出鲜花多少支?(慰问金=销售额-成本)
考点分析:
相关试题推荐
如图,已知二次函数y=x
2+bx+3与x轴交于点B(3,0),与y轴交于点A,O为坐标原点,P是二次函数y=x
2+bx+3的图象上一个动点,点P的横坐标是m,且m>3,过点P作PM,PM交直线AB于M.
(1)求二次函数的解析式;
(2)若以AB为直径的⊙N恰好与直线PM相切,求此时点M的坐标;
(3)在点P的运动过程中,△APM能否为等腰三角形?若能,求出点P的坐标;若不能请说出理由.
查看答案
填空或解答:点B、C、E在同一直线上,点A、D在直线CE的同侧,AB=AC,EC=ED,∠BAC=∠CED,直线AE、BD交于点F.
(1)如图①,若∠BAC=60°,则∠AFB=______;如图②,若∠BAC=90°,则∠AFB=______;
(2)如图③,若∠BAC=α,则∠AFB=______(用含α的式子表示);
(3)将图③中的△ABC绕点C旋转(点F不与点A、B重合),得图④或图⑤.在图④中,∠AFB与∠α的数量关系是∠AFB=90°
;在图⑤中,∠AFB与∠α的数量关系是______.请你任选其中一个结论证明.
查看答案
市园林处为了对一段公路进行绿化,计划购买A,B两种风景树共900棵.A,B两种树的相关信息如下表:
品种 项目 | 单价(元/棵) | 成活率 |
A | 80 | 92% |
B | 100 | 98% |
若购买A种树x棵,购树所需的总费用为y元.
(1)求y与x之间的函数关系式;
(2)若购树的总费用不超过82 000元,则购A种树不少于多少棵?
(3)若希望这批树的成活率不低于94%,且使购树的总费用最低,应选购A,B两种树各多少棵?此时最低费用为多少?
查看答案
如图,△ABC中,A(-2,3),B(-3,1),C(-1,2).
(1)将△ABC向右平移4个单位长度,画出平移后的△A
1B
1C
1;
(2)画出△ABC关于x轴对称的△A
2B
2C
2;
(3)将△ABC绕原点O旋转180°,画出旋转后的△A
3B
3C
3;
(4)在△A
1B
1C
1,△A
2B
2C
2,△A
3B
3C
3中,△______与△______成轴对称,对称轴是______;△______与△______成中心对称,对称中心的坐标是______.
查看答案
如图所示,点P表示广场上的一盏照明灯.
(1)请你在图中画出小敏在照明灯P照射下的影子(用线段表示);
(2)若小丽到灯柱MO的距离为4.5米,照明灯P到灯柱的距离为1.5米,小丽目测照明灯P的仰角为55°,她的目高QB为1.6米,试求照明灯P到地面的距离(结果精确到0.1米).
(参考数据:tan55°≈1.428,sin55°≈0.819,cos55°≈0.574)
查看答案