满分5 > 初中数学试题 >

已知:如图①,在Rt△ACB中,∠C=90°,AC=4 cm,BC=3 cm,点...

已知:如图①,在Rt△ACB中,∠C=90°,AC=4 cm,BC=3 cm,点P由B出发沿BA方向向点A匀速运动,速度为1cm/s;点Q由A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ.若设运动的时间为t(s)(0<t<2),解答下列问题:
(1)当t为何值时,PQ∥BC;
(2)设△AQP的面积为y(cm2),求y与t之间的函数关系式;
(3)是否存在某一时刻t,使线段PQ恰好把Rt△ACB的周长和面积同时平分?若存在,求出此时t的值;若不存在,说明理由;
(4)如图②,连接PC,并把△PQC沿QC翻折,得到四边形PQP′C,那么是否存在某一时刻t,使四边形PQP′C为菱形?若存在,求出此时菱形的边长;若不存在,说明理由.
manfen5.com 满分网
(1)当PQ∥BC时,我们可得出三角形APQ和三角形ABC相似,那么可得出关于AP,AB,AQ,AC的比例关系,我们观察这四条线段,已知的有AC,根据P,Q的速度,可以用时间t表示出AQ,BP的长,而AB可以用勾股定理求出,这样也就可以表示出AP,那么将这些数值代入比例关系式中,即可得出t的值. (2)求三角形APQ的面积就要先确定底边和高的值,底边AQ可以根据Q的速度和时间t表示出来.关键是高,可以用AP和∠A的正弦值来求.AP的长可以用AB-BP求得,而sinA就是BC:AB的值,因此表示出AQ和AQ边上的高后,就可以得出y与t的函数关系式. (3)如果将三角形ABC的周长和面积平分,那么AP+AQ=BP+BC+CQ,那么可以用t表示出CQ,AQ,AP,BP的长,那么可以求出此时t的值,我们可将t的值代入(2)的面积与t的关系式中,求出此时面积是多少,然后看看面积是否是三角形ABC面积的一半,从而判断出是否存在这一时刻. (4)我们可通过构建相似三角形来求解.过点P作PM⊥AC于M,PN⊥BC于N,那么PNCM就是个矩形,解题思路:通过三角形BPN和三角形ABC相似,得出关于BP,PN,AB,AC的比例关系,即可用t表示出PN的长,也就表示出了MC的长,要想使四边形PQP'C是菱形,PQ=PC,根据等腰三角形三线合一的特点,QM=MC,这样有用t表示出的AQ,QM,MC三条线段和AC的长,就可以根据AC=AQ+QM+MC来求出t的值.求出了t就可以得出QM,CM和PM的长,也就能求出菱形的边长了. 【解析】 (1)在Rt△ABC中,AB=, 由题意知:AP=5-t,AQ=2t,若PQ∥BC,则△APQ∽△ABC, ∴=,∴=, ∴t=.所以当t=时,PQ∥BC. (2)过点P作PH⊥AC于H. ∵△APH∽△ABC, ∴=, ∴=, ∴PH=3-t, ∴y=×AQ×PH=×2t×(3-t)=-t2+3t. (3)若PQ把△ABC周长平分,则AP+AQ=BP+BC+CQ. ∴(5-t)+2t=t+3+(4-2t),解得t=1. 若PQ把△ABC面积平分,则S△APQ=S△ABC,即-+3t=3. ∵t=1代入上面方程不成立, ∴不存在这一时刻t,使线段PQ把Rt△ACB的周长和面积同时平分. (4)过点P作PM⊥AC于M,PN⊥BC于N, 若四边形PQP'C是菱形,那么PQ=PC. ∵PM⊥AC于M, ∴QM=CM. ∵PN⊥BC于N,易知△PBN∽△ABC. ∴=,∴=, ∴PN=, ∴QM=CM=, ∴t+t+2t=4,解得:t=. ∴当t=s时,四边形PQP'C是菱形. 此时PM=3-t=cm,CM=t=cm, 在Rt△PMC中,PC===cm, ∴菱形PQP′C边长为cm.
复制答案
考点分析:
相关试题推荐
某儿童玩具店将进货价为30元一件玩具以40元出售,平均每月能售出600个,调查表明,售价每上涨1元,其销售量将减少10个,为了实现每月10000元的销售利润,这种玩具的售价应定为多少?这时进这种玩具多少个?
查看答案
已知:如图1,在边长为5的正方形ABCD中,点E、F分别是BC、DC边上的点,且AE⊥EF,BE=2.
(1)求EC:CF的值;
(2)延长EF交正方形外角平分线CP于点P(图2),试判断AE与EP的大小关系,并说明理由.
manfen5.com 满分网
查看答案
若关于x的方程(k-1)manfen5.com 满分网有两个不相等的实数根.求k的取值范围.
查看答案
如图,在△ABC中,AB=AC,D为BC中点,四边形ABDE是平行四边形.求证:四边形ADCE是矩形.

manfen5.com 满分网 查看答案
已知代数式x2-2x-6.(1)当x=2-manfen5.com 满分网,求代数式的值;(2)用配方法求当x取什么值时,代数式的值最小,最小值是多少?
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.