满分5 > 初中数学试题 >

已知:如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且B...

已知:如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,H是BC边的中点,连接DH与BE相交于点G.
(1)求证:BF=AC;
(2)求证:CE=manfen5.com 满分网BF;
(3)CE与BG的大小关系如何?试证明你的结论.

manfen5.com 满分网
(1)利用ASA判定Rt△DFB≌Rt△DAC,从而得出BF=AC. (2)利用ASA判定Rt△BEA≌Rt△BEC,得出CE=AE=AC,又因为BF=AC所以CE=AC=BF (3)利用等腰三角形“三线合一”)和勾股定理即可求解. (1)证明:∵CD⊥AB,∠ABC=45°, ∴△BCD是等腰直角三角形. ∴BD=CD. ∵∠DBF=90°-∠BFD,∠DCA=90°-∠EFC,且∠BFD=∠EFC, ∴∠DBF=∠DCA. 在Rt△DFB和Rt△DAC中, ∵ ∴Rt△DFB≌Rt△DAC(ASA). ∴BF=AC; (2)证明:∵BE平分∠ABC, ∴∠ABE=∠CBE. 在Rt△BEA和Rt△BEC中 , ∴Rt△BEA≌Rt△BEC(ASA). ∴CE=AE=AC. 又由(1),知BF=AC, ∴CE=AC=BF; (3)证明:∠ABC=45°,CD垂直AB于D,则CD=BD. H为BC中点,则DH⊥BC(等腰三角形“三线合一”) 连接CG,则BG=CG,∠GCB=∠GBC=∠ABC=×45°=22.5°,∠EGC=45°. 又∵BE垂直AC,故∠EGC=∠ECG=45°,CE=GE. ∵△GEC是直角三角形, ∴CE2+GE2=CG2, ∵DH垂直平分BC, ∴BG=CG, ∴CE2+GE2=CG2=BG2;即2CE2=BG2,BG=CE, ∴BG>CE.
复制答案
考点分析:
相关试题推荐
某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.现该商场要保证每天盈利6 000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?
查看答案
阅读下题及证明过程:已知:如图,D是△ABC中BC边上一点,E是AD上一点,EB=EC,∠ABE=∠ACE,求证:∠BAE=∠CAE.
证明:在△AEB和△AEC中,
∵EB=EC,∠ABE=∠ACE,AE=AE,
∴△AEB≌△AEC…第一步
∴∠BAE=∠CAE…第二步
问上面证明过程是否正确?若正确,请写出每一步推理的依据;若不正确,请指出错在哪一步,并写出你认为正确的证明过程.

manfen5.com 满分网 查看答案
如图,在宽为20m,长为32m的矩形地上,修筑同样宽的三条道路,把耕地分成大小不等的六块,要使耕地面积为570m2,求道路的宽为多少米?
manfen5.com 满分网
查看答案
已知关于x的一元二次方程x2-(m-1)x+m+2=0,若方程有两个相等的实数根,求m的值.
查看答案
已知:如图,在△ABC中,AB=AC,点D,E在边BC上,且BD=CE.
(1)找出图中所有的互相全等的三角形;
(2)求证:∠ADE=AED.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.