如图:抛物线经过A(-3,0)、B(0,4)、C(4,0)三点.
(1)求抛物线的解析式.
(2)已知AD=AB(D在线段AC上),有一动点P从点A沿线段AC以每秒1个单位长度的速度移动;同时另一个动点Q以某一速度从点B沿线段BC移动,经过t秒的移动,线段PQ被BD垂直平分,求t的值;
(3)在(2)的情况下,抛物线的对称轴上是否存在一点M,使MQ+MC有最小值?若存在,请求出点M的坐标;若不存在,请说明理由.(注:抛物线y=ax
2+bx+c的对称轴为x=-
)
考点分析:
相关试题推荐
在图1至图3中,点B是线段AC的中点,点D是线段CE的中点.四边形BCGF和CDHN都是正方形.AE的中点是M.
(1)如图1,点E在AC的延长线上,点N与点G重合时,点M与点C重合,求证:FM=MH,FM⊥MH;
(2)将图1中的CE绕点C顺时针旋转一个锐角,得到图2,求证:△FMH是等腰直角三角形;
(3)将图2中的CE缩短到图3的情况,△FMH还是等腰直角三角形吗?(不必说明理由)
查看答案
某批发市场批发甲、乙两种水果,根据以往经验和市场行情,预计夏季某一段时间内,甲种水果的销售利润y
甲(万元)与进货量x(吨)近似满足函数关系y
甲=0.3x;乙种水果的销售利润y
乙(万元)与进货量x(吨)近似满足函数关系y
乙=ax
2+bx(其中a≠0,a,b为常数),且进货量x为1吨时,销售利润y
乙为1.4万元;进货量x为2吨时,销售利润y
乙为2.6万元.
(1)求y
乙(万元)与x(吨)之间的函数关系式.
(2)如果市场准备进甲、乙两种水果共10吨,设乙种水果的进货量为t吨,请你写出这两种水果所获得的销售利润之和W(万元)与t(吨)之间的函数关系式.并求出这两种水果各进多少吨时获得的销售利润之和最大,最大利润是多少?
查看答案
如图,一巡逻艇航行至海面B处时,得知其正北方向上C处一渔船发生故障.已知港口A处在B处的北偏西38°方向上,距B处20海里;C处在A处的北偏东65°方向上.求B,C之间的距离(结果精确到1海里).
参考数据:sin38°≈0.62,cos38°≈0.79,tan38°≈0.78,sin65°≈0.91,cos65°≈0.42,tan65°≈2.14.
查看答案
已知反比例函数
(x>0)的图象经过点P(2,2),直线y=-x沿y轴向上平
移后,与该反比例函数图象交于点Q(1,m).
(1)求该反比例函数的解析式;
(2)求平移后直线的解析式.
查看答案
如图,在四边形ABCD中,AD∥BC,E是CD中点,BE平分∠ABC,BE的延长线与AD的延长线相交于点M,连接AE.
求证:AE⊥BM.
查看答案