满分5 > 初中数学试题 >

如图,已知抛物线y=+bx+c与y轴相交于C,与x轴相交于A、B,点A的坐标为(...

如图,已知抛物线y=manfen5.com 满分网+bx+c与y轴相交于C,与x轴相交于A、B,点A的坐标为(2,0),点C的坐标为(0,-1).
(1)求抛物线的解析式;
(2)点E是线段AC上一动点,过点E作DE⊥x轴于点D,连接DC,当△DCE的面积最大时,求点D的坐标;
(3)在直线BC上是否存在一点P,使△ACP为等腰三角形?若存在,求点P的坐标;若不存在,说明理由.
manfen5.com 满分网
(1)由于抛物线的解析式中只有两个待定系数,因此只需将A、C两点的坐标代入抛物线中即可求出二次函数的解析式. (2)根据A、C的坐标,易求得直线AC的解析式,可设D点的横坐标,根据直线AC的解析式可表示出E点的纵坐标,即可得到DE的长,以DE为底,D点横坐标为高即可得到△CDE的面积,从而得到关于△CDE的面积与D点横坐标的函数关系式,根据所得函数的性质即可求出△CDE的面积最大值及对应的D点坐标. (3)根据抛物线的解析式,可求出B点的坐标,进而能得到直线BC的解析式,设出点P的横坐标,根据直线BC的解析式表示出P点的纵坐标,然后利用坐标系两点间的距离公式分别表示出△ACP三边的长,从而根据:①AP=CP、②AC=AP、③CP=AC,三种不同等量关系求出符合条件的P点坐标. 【解析】 (1)由于抛物线经过A(2,0),C(0,-1), 则有:, 解得; ∴抛物线的解析式为:y=-x-1. (2)∵A(2,0),C(0,-1), ∴直线AC:y=x-1; 设D(x,0),则E(x,x-1), 故DE=0-(x-1)=1-x; ∴△DCE的面积:S=DE×|xD|=×(1-x)×x=-x2+x=-(x-1)2+, 因此当x=1, 即D(1,0)时,△DCE的面积最大,且最大值为. (3)由(1)的抛物线解析式易知:B(-1,0), 可求得直线BC的解析式为:y=-x-1; 设P(x,-x-1),因为A(2,0),C(0,-1),则有: AP2=(x-2)2+(-x-1)2=2x2-2x+5, AC2=5,CP2=x2+(-x-1+1)2=2x2; ①当AP=CP时,AP2=CP2,有: 2x2-2x+5=2x2,解得x=2.5, ∴P1(2.5,-3.5); ②当AP=AC时,AP2=AC2,有: 2x2-2x+5=5,解得x=0(舍去),x=1, ∴P2(1,-2); ③当CP=AC时,CP2=AC2,有: 2x2=5,解得x=±, ∴P3(,--1),P4(-,-1); 综上所述,存在符合条件的P点,且P点坐标为:P1(2.5,-3.5)、P2(1,-2)、P3(,--1)、P4(-,-1).
复制答案
考点分析:
相关试题推荐
“保护环境,人人有责”为了更好的治理巴河,巴中市污水处理厂决定购买A、B两型污水处理设备,共10台,其信息如下表:
单价(万元/台)每台处理污水量(吨/月)
A型12240
B型10200
(1)设购买A型设备x台,所需资金共为W万元,每月处理污水总量为y吨,试写出W与x,y与x的函数关系式;
(2)经预算,市污水处理厂购买设备的资金不超过106万元,月处理污水量不低于2040吨,请你列举出所有购买方案,并指出哪种方案最省钱,需要多少资金?
查看答案
如图,直角△ABC中,∠C=90°,manfen5.com 满分网manfen5.com 满分网,点P为边BC上一动点,PD∥AB,PD交AC于点D,连接AP.
(1)求AC、BC的长;
(2)设PC的长为x,△ADP的面积为y.当x为何值时,y最大,并求出最大值.

manfen5.com 满分网 查看答案
“清明节”前夕,我县某校决定从八年级(一)班、(二)班中选一个班去杨闇公烈士陵园扫墓,为了公平,有同学设计了一个方法,其规则如下:在一个不透明的盒子里装有形状、大小、质地等完全相同的3个小球,把它们分别标上数字1、2、3,由(一)班班长从中随机摸出一个小球,记下小球上的数字;在一个不透明口袋中装有形状、大小、质地等完全相同的4个小球,把它们分别标上数字1、2、3、4,由(二)班班长从口袋中随机摸出一个小球,记下小球上的数字,然后计算出这两个数字的和,若两个数字的和为奇数,则选(一)班去;若两个数字的和为偶数,则选(二)班去.
(1)用树状图或列表的方法求八年级(一)班被选去扫墓的概率;
(2)你认为这个方法公平吗?若公平,请说明理由;若不公平,请设计一个公平的方法.
查看答案
manfen5.com 满分网如图,已知在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数y=manfen5.com 满分网(m≠0)的图象相交于A、B两点,且点B的纵坐标为-manfen5.com 满分网,过点A作AC⊥x轴于点C,AC=1,OC=2.
求:(1)求反比例函数的解析式;
(2)求一次函数的解析式.
查看答案
先化简,再求值:(1-manfen5.com 满分网)÷manfen5.com 满分网,其中x=2.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.