满分5 > 初中数学试题 >

抛物线y=ax2+bx+c交x轴于A、B两点,交y轴于点C,已知抛物线的对称轴为...

抛物线y=ax2+bx+c交x轴于A、B两点,交y轴于点C,已知抛物线的对称轴为x=1,B(3,0),C(0,-3),
(1)求二次函数y=ax2+bx+c的解析式;
(2)在抛物线对称轴上是否存在一点P,使点P到B、C两点距离之差最大?若存在,求出P点坐标;若不存在,请说明理由;
(3)平行于x轴的一条直线交抛物线于M、N两点,若以MN为直径的圆恰好与x轴相切,求此圆的半径.

manfen5.com 满分网
(1)根据抛物线过C点,可得出c=-3,对称轴x=1,则-=1,然后可将B点坐标代入抛物线的解析式中,联立由对称轴得出的关系式即可求出抛物线的解析式. (2)本题的关键是要确定P点的位置,由于A、B关于抛物线的对称轴对称,因此可连接AC,那么P点就是直线AC与对称轴的交点.可根据A、C的坐标求出AC所在直线的解析式,进而可根据抛物线对称轴的解析式求出P点的坐标. (3)根据圆和抛物线的对称性可知:圆心必在对称轴上.因此可用半径r表示出M、N的坐标,然后代入抛物线中即可求出r的值. 【解析】 (1)将C(0,-3)代入y=ax2+bx+c, 得c=-3. 将c=-3,B(3,0)代入y=ax2+bx+c, 得9a+3b+c=0.(1) ∵直线x=1是对称轴, ∴.(2)(2分) 将(2)代入(1)得 a=1,b=-2. 所以,二次函数得解析式是y=x2-2x-3. (2)AC与对称轴的交点P即为到B、C的距离之差最大的点. ∵C点的坐标为(0,-3),A点的坐标为(-1,0), ∴直线AC的解析式是y=-3x-3, 又∵直线x=1是对称轴, ∴点P的坐标(1,-6). (3)设M(x1,y)、N(x2,y),所求圆的半径为r, 则x2-x1=2r,(1) ∵对称轴为直线x=1,即=1, ∴x2+x1=2.(2) 由(1)、(2)得:x2=r+1.(3) 将N(r+1,y)代入解析式y=x2-2x-3, 得y=(r+1)2-2(r+1)-3. 整理得:y=r2-4. 由所求圆与x轴相切,得到r=|y|,即r=±y, 当y>0时,r2-r-4=0, 解得,,(舍去), 当y<0时,r2+r-4=0, 解得,,(舍去). 所以圆的半径是或.
复制答案
考点分析:
相关试题推荐
如图1,⊙O的直径为AB,过半径OA的中点G作弦CE⊥AB,在manfen5.com 满分网上取一点D,分别作直线PA、ED,交直线AB于点F、M.
(1)求∠COA和∠FDM的度数;
(2)求证:△FDM∽△COM;
(3)如图2,若将垂足G改取为半径OB上任意一点,点D改取在manfen5.com 满分网上,仍作直线PA、ED,分别交直线AB于点F、M.试判断:此时是否仍有△FDM∽△COM?证明你的结论.

manfen5.com 满分网 查看答案
(1)已知有一条抛物线的形状(开口方向和开口大小)与抛物线y=2x2相同,它的对称轴是直线x=-2;且当x=1时,y=6,求这条抛物线的解析式.
(2)定义:如果点P(t,t)在抛物线上,则点P叫做这条抛物线的不动点.
①求出(1)中所求抛物线的所有不动点的坐标;
②当a、b、c满足什么关系式时,抛物线y=ax2+bx+c上一定存在不动点.
查看答案
对于上抛物体,在不计空气阻力的情况下,有如下关系式:h=vt-manfen5.com 满分网gt2,其中h(米)是上抛物体上升的高度,v(米/秒)是上抛物体的初速度,g(米/秒2)是重力加速度,manfen5.com 满分网t(秒)是物体抛出后所经过的时间,如图是h与t的函数关系图.
(1)求:v和g;
(2)几秒后,物体在离抛出点25米高的地方?
查看答案
如图,刘红同学为了测量某塔的高度,她先在A处测得塔顶C的仰角为30°,再向塔的方向直行35米到达B处,又测得塔顶C的仰角为60°,如果测角仪的高度为1.5米,请你帮助刘红计算出塔的高度(结果精确到0.1米).(manfen5.com 满分网

manfen5.com 满分网 查看答案
如图,AO是△ABC的中线,⊙O与AB边相切于点D.
(1)要使⊙O与AC边也相切,应增加条件______(任写一个);
(2)增加条件后,请你说明⊙O与AC边相切的理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.