满分5 > 初中数学试题 >

如图所示,抛物线y=ax2+c(a>0)经过梯形ABCD的四个顶点,梯形的底AD...

如图所示,抛物线y=ax2+c(a>0)经过梯形ABCD的四个顶点,梯形的底AD在x轴上,其中A(-2,0),B(-1,-3).
(1)求抛物线的解析式;
(2)点M为y轴上任意一点,当点M到A,B两点的距离之和为最小时,求此时点M的坐标;
(3)在第(2)问的结论下,抛物线上的点P使S△PAD=4S△ABM成立,求点P的坐标.

manfen5.com 满分网
(1)将A、B点的坐标代入抛物线的解析式中即可求出待定系数的值; (2)由于A、D关于抛物线对称轴即y轴对称,那么连接BD,BD与y轴的交点即为所求的M点,可先求出直线BD的解析式,即可得到M点的坐标; (3)设直线BC与y轴的交点为N,那么△ABM的面积即为梯形ABNO、△BMN、△AOM的面积差,由此可求出△ABM和△PAD的面积;在△PAD中,AD的长为定值,可根据其面积求出P点纵坐标的绝对值,然后代入抛物线的解析式中即可求出P点的坐标. 【解析】 (1)由题意可得:, 解得; ∴抛物线的解析式为:y=x2-4; (2)由于A、D关于抛物线的对称轴(即y轴)对称,连接BD. 则BD与y轴的交点即为M点; 设直线BD的解析式为:y=kx+b(k≠0),则有: , 解得; ∴直线BD的解析式为y=x-2,点M(0,-2); (3)设BC与y轴的交点为N,则有N(0,-3); ∴MN=1,BN=1,ON=3; S△ABM=S梯形AONB-S△BMN-S△AOM=(1+2)×3-×2×2-×1×1=2; ∴S△PAD=4S△ABM=8; 由于S△PAD=AD•|yP|=8, 即|yP|=4; 当P点纵坐标为4时,x2-4=4, 解得x=±2, ∴P1(-2,4),P2(2,4); 当P点纵坐标为-4时,x2-4=-4, 解得x=0, ∴P3(0,-4); 故存在符合条件的P点,且P点坐标为:P1(-2,4),P2(2,4),P3(0,-4).
复制答案
考点分析:
相关试题推荐
如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A,C分别在坐标轴上,顶点B的坐标为(4,2).过点D(0,3)和E(6,0)的直线分别与AB,BC交于点M,N.
(1)求直线DE的解析式和点M的坐标;
(2)若反比例函数manfen5.com 满分网(x>0)的图象经过点M,求该反比例函数的解析式,并通过计算判断点N是否在该函数的图象上;
(3)若反比例函数manfen5.com 满分网(x>0)的图象与△MNB有公共点,请直接写出m的取值范围.

manfen5.com 满分网 查看答案
如图,⊙O是△ABC的外接圆,FH是⊙O的切线,切点为F,FH∥BC,连接AF交BC于E,∠ABC的平分线BD交AF于D,连接BF.
(1)证明:AF平分∠BAC;
(2)证明:BF=FD.

manfen5.com 满分网 查看答案
A箱中装有2张相同的卡片,它们分别写有数字-1,-2;B箱中装有3张相同的卡片,它们分别写有数字1、-1、2,现从A箱、B箱中各随机地取1张卡片,
(1)请你用列表法表示出所有可能出现的结果;
(2)求两张卡片上的数字恰好相同的概率;
(3)求两张卡片上的数字恰好互为相反数的概率.
查看答案
我国杂交水稻之父-袁隆平院士,全身心投入杂交水稻的研究,一次,他用A,B,C,D四种型号的水稻种了共1000粒进行发芽实验,从中选出发芽率高的种子进行推广,通过实验得知,C种型号的种子发芽率为96%,根据实验数据绘制了如下尚不完整的统计表和统计图.
(1)请你补充完整统计表;
(2)通过计算分析,你认为应选哪一种型号的种子进行推广.
四种型号的种子所占百分比统计表:
型号种子数(粒)百分比
A35035%
B  20%
C  
D250 
合计1000 100%


manfen5.com 满分网 查看答案
如图,已知矩形ABCD的边长AB=3cm,BC=6cm,某一时刻,动点M从点A出发沿AB方向以1cm∕s的速度向点B匀速运动;同时,动点N从点D沿DA方向以2cm∕s的速度向点A匀速运动.经过多少时间,△AMN的面积等于矩形ABCD面积的manfen5.com 满分网

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.