满分5 > 初中数学试题 >

如图是某居民小区的一块直角三角形空地ABC,某斜边AB=100米,直角边AC=8...

如图是某居民小区的一块直角三角形空地ABC,某斜边AB=100米,直角边AC=80米.现要利用这块空地建一个矩形停车场DCFE,使得D点在BC边上,E、F分别是AB、AC边的中点.
(1)求另一条直角边BC的长度;
(2)求停车场DCFE的面积;
(3)为了提高空地利用律,现要在剩余的△BDE中,建一个半圆形的花坛,使它的圆心在BE边上,且使花坛的面积达到最大,请你在原图中画出花坛的草图,求出它的半径(不要求说明面积最大的理由),并求此时直角三角形空地ABC的总利用率是百分之几(精确到1%).

manfen5.com 满分网
(1)利用勾股定理可求出BC的长; (2)由已知可得EF为△ABC的中位线,由中位线定理可知EF=BC=×60=30m,FC=AC=×80=40(米),可求出矩形的面积; (3)如图,当花坛的面积达到最大时,半圆O与BD、DE相切,设切点分别为G、K,圆心为O,连接OG、OK,则OG⊥BD,OK⊥DE,OG=OK,即四边形OGDK为正方形,设OG=x,易证△OBG∽△ABC,根据其边长比可求出x的值,从而求出半圆的面积,得出结论. 【解析】 (1)由勾股定理得BC===60(米), ∴另一条直角边BC的长为60米. (2)由已知可得EF为△ABC的中位线, ∴EF=BC=×60=30(米), 又FC=AC=×80=40(米), ∴S矩形DCFE=EF•FC=30×40=1200(米2). (3)如图,当花坛的面积达到最大时,半圆O与BD、DE相切, 设切点分别为G、K,圆心为O, 连接OG、OK,则OG⊥BD,OK⊥DE,OG=OK, 又∵∠BDE=90°, ∴四边形OGDK为正方形. 设OG=x, ∵BD=BC-CD=60-30=30, ∴BG=BD-GD=30-x. ∵∠OGB=∠C=90°,∠B=∠B, ∴△OBG∽△ABC, ∴=. 即==,解得x=. ∴当花坛的面积达到最大时,其半径为米. ∴直角三角形空地ABC的总利用率=[π()2+1200]÷(×80×60)≈69%.
复制答案
考点分析:
相关试题推荐
如图,已知O为原点,点A的坐标为(4,3),⊙A的半径为2.过A作直线l平行于x轴,交y轴于点B,点P在直线l上运动.
(1)当点P在⊙A上时,请你直接写出它的坐标;
(2)设点P的横坐标为12,试判断直线OP与⊙A的位置关系,并说明理由.

manfen5.com 满分网 查看答案
如图,AB是⊙O的直径,AE平分∠BAC交⊙O于点E,过E作⊙O的切线ME交AC于点D.试判断△AED的形状,并说明理由.

manfen5.com 满分网 查看答案
正方形网格中,每个小正方形的边长为1个单位,以O为原点建立平面直角坐标系.圆心为A(3,0)的⊙A被y轴截得的弦长BC=8,如下图所示.解答下列问题:
manfen5.com 满分网
(1)⊙A的半径为______
(2)请在图中将⊙A先向上平移6个单位,再向左平移8个单位得到⊙D,观察你所画的图形知⊙D的圆心D点的坐标是______;⊙D与x轴的位置关系是______;⊙D与y轴的位置关系是______
(3)在图中画出直线x=5,直线x=5被⊙A所截得的线段MN的长为______
查看答案
如图,点P在⊙O的直径BA的延长线上,AB=2PA,PC切⊙O于点C,连接BC.
(1)求∠P的正弦值;
(2)若⊙O的半径r=2cm,求BC的长度.

manfen5.com 满分网 查看答案
本市新建的滴水湖是圆形人工湖.为测量该湖的半径,小杰和小丽沿湖边选取A,B,C三根木柱,使得A,B之间的距离与A,C之间的距离相等,并测得BC长为240米,A到BC的距离为5米,如图所示,请你帮他们求出滴水湖的半径.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.