已知:如图,在平面直角坐标系xOy中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=2,OC=3.过原点O作∠AOC的平分线交AB于点D,连接DC,过点D作DE⊥DC,交OA于点E.
(1)求过点E、D、C的抛物线的解析式;
(2)将∠EDC绕点D按顺时针方向旋转后,角的一边与y轴的正半轴交于点F,另一边与线段OC交于点G.如果DF与(1)中的抛物线交于另一点M,点M的横坐标为
,那么EF=2GO是否成立?若成立,请给予证明;若不成立,请说明理由;
(3)对于(2)中的点G,在位于第一象限内的该抛物线上是否存在点Q,使得直线GQ与AB的交点P与点C、G构成的△PCG是等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.
考点分析:
相关试题推荐
阅读理【解析】
对于任意正实数a,b,因为
,所以
,所以
,只有当a=b时,等号成立.
结论:在
(a,b均为正实数)中,若ab为定值p,则
,只有当a=b时,a+b有最小值
.
(1)根据上述内容,回答下列问题:若m>0,只有当m=______时,
有最小值______;
(2)探索应用:如图,有一均匀的栏杆,一端固定在A点,在离A端2米的B处垂直挂着一个质量为8千克的重物.若已知每米栏杆的质量为0.5千克,现在栏杆的另一端C用一个竖直向上的拉力F拉住栏杆,使栏杆水平平衡.试问栏杆多少长时,所用拉力F最小?是多少?
查看答案
某商品的进价为每件30元,现在的售价为每件40元,每星期可卖出150件.市场调查反映:如果每件的售价每涨1元(售价每件不能高于45元),那么每星期少卖10件.设每件涨价x元(x为非负整数),每星期的销量为y件.
(1)求y与x的函数关系式及自变量x的取值范围;
(2)如何定价才能使每星期的利润最大且每星期的销量较大?每星期的最大利润是多少?
查看答案
如图,点A、B、D、E在⊙O上,弦AE、BD的延长线相交于点C.若AB是⊙O的直径,D是BC的
中点.
(1)试判断AB、AC之间的大小关系,并给出证明;
(2)在上述题设条件下,△ABC还需满足什么条件,点E才一定是AC的中点.(直接写出结论)
查看答案
已知图中的曲线是反比例函数y=
(m为常数,m≠5)图象的一支.
(Ⅰ)这个反比例函数图象的另一支在第几象限?常数m的取值范围是什么;
(Ⅱ)若该函数的图象与正比例函数y=2x的图象在第一象内限的交点为A,过A点作x轴的垂线,垂足为B,当△OAB的面积为4时,求点A的坐标及反比例函数的解析式.
查看答案
已知一个圆锥的主视图是一个高为6、底边长为8的等腰三角形,求这个圆锥的侧面积和表面积.
查看答案