满分5 > 初中数学试题 >

如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2.点O是AC的中...

如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2.点O是AC的中点,过点O的直线l从与AC重合的位置开始,绕点O作逆时针旋转,交AB边于点D,过点C作CE∥AB交直线l于点E,设直线l的旋转角为α.
(1)①当α=______度时,四边形EDBC是等腰梯形,此时AD的长为______
②当α=______度时,四边形EDBC是直角梯形,此时AD的长为______
(2)当α=90°时,判断四边形EDBC是否为菱形,并说明理由.

manfen5.com 满分网
(1)根据旋转的性质和等腰梯形的性质,①假设四边形EDBC是等腰梯形,根据题目已知条件及外角和定理可求α,AD;②假设四边形EDBC是直角梯形,根据题目已知条件及内角和定理可求α,AD. (2)根据∠α=∠ACB=90°先证明四边形EDBC是平行四边形.再利用Rt△ABC中,∠ACB=90°,∠B=60°,BC=2求得AB,AC,AO的长度;在Rt△AOD中,∠A=30°,AD=2,可求BD,比较得BD=BC,可证明四边形EDBC是菱形. 【解析】 (1)①当四边形EDBC是等腰梯形时, ∵∠EDB=∠B=60°,而∠A=30°, ∴α=∠EDB-∠A=30°, ∴△ADO是等腰三角形, ∴AD=OD, 过点O作OF∥BC, ∵BC⊥AC, ∴OF⊥AC, ∴OF是△ABC的中位线, ∴OF=BC=1, ∵α=∠EDB-∠A=30°, ∴∠ODF=60°=∠DOF=60°, ∴△ODF是等边三角形, ∴OD=OF=DF=1, ∵∠A=∠α=30°, ∴AD=OD=1; ②当四边形EDBC是直角梯形时,∠ODA=90°,而∠A=30°, 根据三角形的内角和定理,得α=90°-∠A=60°,此时,AD=AC×=1.5. (2)当∠α=90°时,四边形EDBC是菱形. ∵∠α=∠ACB=90°, ∴BC∥ED, ∵CE∥AB, ∴四边形EDBC是平行四边形. 在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2, ∴∠A=30°, ∴AB=4,AC=2, ∴AO==. 在Rt△AOD中,∠A=30°,OD=AD, AD==, ∴AD=2, ∴BD=2, ∴BD=BC. 又∵四边形EDBC是平行四边形, ∴四边形EDBC是菱形.
复制答案
考点分析:
相关试题推荐
一次期终考试中A、B、C、D、E五位同学的语文、数学成绩等有关信息,如下表所示:
 A    B   C    D  E平均分标准差
语文81   82   79    78   80   ①  manfen5.com 满分网
数学88   82   94    85   76   85   ②
(1)求这五位同学在本次考试中语文成绩的平均分和数学成绩的标准差;
(2)为了比较不同学科考试成绩的好与差,采用标准分是一个合理的选择,标准分的计算公式是:标准分=(个人成绩-平均成绩)÷成绩标准差.从标准分看,标准分大的考试成绩更好,请问A同学在本次考试中,语文与数学哪个学科考得更好?
查看答案
先化简,再求值:manfen5.com 满分网,其中manfen5.com 满分网
查看答案
当k为何值时,关于x的方程x2-2(k+1)x+k2-1=0有实数根?
查看答案
解方程:
(1)(x-2)2=1;
(2)x2-4x-3=0.
查看答案
已知二次函数y=ax2+bx+c的图象与x轴交于点(-2,0)、(x1,0),且1<x1<2,与y轴的正半轴的交点在(0,2)的下方.下列结论:①4a-2b+c=0;②a<b<0;③2a+c>0;④2a-b+1>0.其中正确结论的个数是    个.
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.