满分5 > 初中数学试题 >

已知:如图,O为平面直角坐标系的原点,半径为1的⊙B经过点O,且与x,y轴分交于...

已知:如图,O为平面直角坐标系的原点,半径为1的⊙B经过点O,且与x,y轴分交于点A,C,点A的坐标为(-manfen5.com 满分网,0),AC的延长线与⊙B的切线OD交于点D.
(1)求OC的长和∠CAO的度数;
(2)求过D点的反比例函数的表达式.

manfen5.com 满分网
(1)在直角三角形ACO中,根据已知条件可以求得OA,AC的长,再根据勾股定理求得OC的长,根据锐角三角函数的概念求得∠CAO的度数; (2)要求反比例函数的表达式,需要求得点D的坐标.作DE⊥x轴于点E,根据对顶角相等和弦切角定理可以求得∠DOE=60°.所以只需再求得OD的长,根据三角形的外角的性质可以求得∠ADO=30°.则OD=OA.从而求得OE,DE的长,再根据点D的坐标求得反比例函数的表达式. 【解析】 (1)∵∠AOC=90°, ∴AC是⊙B的直径. ∴AC=2. 又∵点A的坐标为(-,0), ∴OA=. ∴. ∴sin∠CAO=. ∴∠CAO=30°; (2)如图,连接OB,过点D作DE⊥x轴于点E, ∵OD为⊙B的切线, ∴OB⊥OD. ∴∠BOD=90°. ∵AB=OB, ∴∠AOB=∠OAB=30°. ∴∠AOD=∠AOB+∠BOD=30°+90°=120°. 在△AOD中,∠ODA=180°-120°-30°=30°=∠OAD. ∴OD=OA=. 在Rt△DOE中,∠DOE=180°-120°=60°, ∴OE=OD•cos60°=OD=,ED=OD•sin60°=. ∴点D的坐标为. 设过D点的反比例函数的表达式为, ∴. ∴.
复制答案
考点分析:
相关试题推荐
已知:如图,A是⊙O上一点,半径OC的延长线与过点A的直线交于B点,OC=BC,AC=manfen5.com 满分网OB.
(1)求证:AB是⊙O的切线;
(2)若∠ACD=45°,OC=2,求弦CD的长.

manfen5.com 满分网 查看答案
将A,B,C,D四人随机分成甲、乙两组参加羽毛球比赛,每组两人.
(1)A在甲组的概率是多少?
(2)A,B都在甲组的概率是多少?
查看答案
已知x2-4=0,求代数式x(x+1)2-x(x2+x)-x-7的值.
查看答案
如图,已知⊙O的直径AB垂直弦CD于点E,连接CO并延长交AD于点F,若CF⊥AD,AB=2,求CD的长.

manfen5.com 满分网 查看答案
解方程x(x-1)=2.
有学生给出如下解法:
∵x(x-1)=2=1×2=(-1)×(-2),
manfen5.com 满分网,或manfen5.com 满分网,或manfen5.com 满分网,或manfen5.com 满分网
解上面第一、四方程组,无解;解第二、三方程组,得x=2或x=-1.
∴x=2或x=-1.
请问:这个解法对吗?试说明你的理由.如果你觉得这个解法不对,请你求出方程的解.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.