满分5 > 初中数学试题 >

如图,BC是⊙O的直径,点A在圆上,且AB=AC=4. P为AB上一点,过P作P...

如图,BC是⊙O的直径,点A在圆上,且AB=AC=4. P为AB上一点,过P作PE⊥AB分别交BC、OA于E、F.
(1)设AP=1,求△OEF的面积;
(2)设AP=a(0<a<2),△APF、△OEF的面积分别记为S1、S2
①若S1=S2,求a的值;
②若S=S1+S2,是否存在一个实数a,使S<manfen5.com 满分网?若存在,求出一个a的值;若不存在,说明理由.

manfen5.com 满分网
(1)易知△AOC、△OEF、△AFP均为等腰直角三角形,因此只需求出OF的长就可得出△OEF的面积,在直角三角形AFP中,根据AP=1,可求得AF=,已知了AB、AC的长可求出OA的长,进而可得出OF的长.也就能求出△OEF的面积. (2)①同(1)可用a表示出△OEF的面积,S2=a2,然后根据S1=S2,可得出关于a的方程,即可求出a的值. ②根据①即可得出关于S,a的函数关系式,然后根据函数的性质即可判断出是否存在使S<的值. 【解析】 (1)∵BC是⊙O的直径, ∴∠BAC=90°, ∵AB=AC ∴∠B=∠C=45°,OA⊥BC, ∴∠1=∠B=45°, ∵PE⊥AB ∴∠2=∠1=45° ∴∠4=∠3=45°, 则△APF、△OEF与△OAB均为等腰直角三角形. ∵AP=l,AB=4, ∴AF=,OA=, ∴OE=OF=, ∴△OEF的面积为•OE•OF=1. (2)①∵FP=AP=a, ∴S1=a2 且AF=, ∴OE=OF=2-a=(2-a), ∴S2=•OE•OF=(2-a)2 ∵S1=S2 ∴a2=(2-a)2 ∴a=4± ∵0<a<2 ∴. ②S=S1+S2=a2+(2-a)2=a2-4a+4=(a-)2+, ∴当时,S取得最小值为, ∵, ∴不存在这样实数a,使S<.
复制答案
考点分析:
相关试题推荐
某商店经销一种销售成本为每千克40元的水产品,据市场分析,若每千克50元销售,一个月能售出500kg,销售单价每涨1元,月销售量就减少10kg,针对这种水产品情况,请解答以下问题:
(1)当销售单价定为每千克55元时,计算销售量和月销售利润;
(2)设销售单价为每千克x元,月销售利润为y元,求y与x的关系式;
(3)商品想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应为多少?
查看答案
某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下图是水平放置的破裂管道有水部分的截面.
(1)请你补全这个输水管道的圆形截面;
(2)若这个输水管道有水部分的水面宽AB=16cm,水面最深地方的高度为4cm,求这个圆形截面的半径.

manfen5.com 满分网 查看答案
在直角坐标平面内,二次函数图象的顶点为A(1,-4),且过点B(3,0).
(1)求该二次函数的解析式;
(2)将该二次函数图象向右平移几个单位,可使平移后所得图象经过坐标原点?并直接写出平移后所得图象与x轴的另一个交点的坐标.

manfen5.com 满分网 查看答案
已知关于x的方程x2-(2k-3)x+k2+1=0.
问:(1)当k为何值时,此方程有实数根;
(2)若此方程的两实数根x1、x2,满足|x1|+|x2|=3,求k的值.
查看答案
解方程:manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.