已知正方形ABCD和正方形AEFG有公共顶点A,将正方形AEFG绕点A旋转.
(1)发现与证明:
发现:①当E点旋转到DA的延长线上时(如图1),△ABE与△ADG的面积关系是:______.
②当E点旋转到CB的延长线上时(如图2),△ABE与△ADG的面积关系是:______.
证明:请你选择上述两个发现中的任意一个加以证明,选择①、②证明的满分分别为4分和6分.(注意:证明前要注明选择了哪一个发现)
(2)引申与运用:
引申:当正方形AEFG旋转任意一个角度时(如图3),△ABE与△ADG的面积关系是:______.
运用:已知△ABC,AB=5cm,BC=3cm,分别以AB、BC、CA为边向外作正方形(如图4),则图中阴影部分的面积和的最大值是______cm
2.
证明:我选择______进行证明.
考点分析:
相关试题推荐
如图是规格为8×8的正方形网格,请在所给网格中按下列要求操作:
(1)请在网格中建立平面直角坐标系,使A点坐标为(-2,4),B点坐标为(-4,2);
(2)在第二象限内的格点上画一点C,使点C与线段AB组成一个以AB为底的等腰三角形,且腰长是无理数,则C点坐标是______,△ABC的周长是______
查看答案
在元旦游园会上,小张和小李参加了一个有奖掷飞镖的游戏.游戏规则是:从两个图形靶中任选一个进行投掷飞镖,命中阴影部分就可以得到奖品(图形靶一是正方形ABCD,图形靶二是菱形ABCD,所有的圆都是半径为1的等圆,相邻的圆都相切).小张选择了图靶一和小李选择了图靶二,通过计算回答:谁更有可能获得奖品?
查看答案
如图,C是射线OE上的一动点,AB是过点C的弦,直线DA与OE的交点为D,现有三个论断:①DA是⊙O的切线;②DA=DC;③OD⊥OB.请你以其中的两个论断为条件,另一个论断为结论,用序号写出一个真命题,用“★★⇒★”表示.并给出证明.我的命题是:______.
查看答案
如图,⊙C经过原点且与两坐标轴分别交于点A和点B,点A的坐标为(0,2),D为⊙C在第一象限内的一点且∠ODB=60°,解答下列各题:
(1)求线段AB的长及⊙C的半径;
(2)求B点坐标及圆心C的坐标.
查看答案
阅读下面的解题过程:解方程:(4x-1)
2-10(4x-1)+24=0
【解析】
把4x-1视为一个整体,设4x-1=y
则原方程可化为:y
2-10y+24=0
解之得:y
1=6,y
2=4,∴4x-1=6或4x-1=4
∴x
1=
,x
2=
这种解方程的方法叫换元法.
请仿照上例,用换元法解方程:(x-2)
2-3(x-2)-10=0
查看答案