登录
|
注册
返回首页
联系我们
在线留言
满分5
>
初中数学试题
>
△ABC的周长为24,M是AB的中点,MC=MA=5,则△ABC的面积为 .
△ABC的周长为24,M是AB的中点,MC=MA=5,则△ABC的面积为
.
画出图形,根据题意M是中点,且MA=MC,可以得出三角形ABC为直角三角形,根据勾股定理以及三角形的周长和面积的求法,列出方程组求解即可. 【解析】 如下图所示: ∵M是AB的中点,MC=MA, ∴CM=AM=BM, ∴三角形ABC为直角三角形,∠ACB为直角, 根据勾股定理得:AC2+BC2=AB2, ∵△ABC的周长为24, ∴AC+AB+BC=24, ∵MA=5, ∴AB=10, 可得出方程组为, 求解方程组得, ∴面积为×AC×BC=×6×8=24.
复制答案
考点分析:
相关试题推荐
如图,A、B、C是⊙O上的三点,以BC为一边,作∠CBD=∠ABC,过BC上一点P,作PE∥AB交BD于点E.若∠AOC=60°,BE=3,则点P到弦AB的距离为
.
查看答案
若代数式
有意义,则在直角坐标系中,点P(m,n)在第
象限.
查看答案
若方程3x
2
-5x-2=0有一根是a,则6a
2
-10a=
.
查看答案
已知x=
+1,y=
-1,则x
2
-y
2
=
.
查看答案
将2003x
2
-(2003
2
-1)x-2003因式分解得
.
查看答案
试题属性
题型:填空题
难度:中等
Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.